ObservationType
- Type of observations handled by the algorithm.ParameterType
- Type of parameters to infer.@PublicationReference(author={"M. Sanjeev Arulampalam","Simon Maskell","Neil Gordon","Tim Clapp"},title="A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking",type=Journal,publication="IEEE Transactions on Signal Processing, Vol. 50, No. 2",year=2002,pages={174,188},url="http://people.cs.ubc.ca/~murphyk/Software/Kalman/ParticleFilterTutorial.pdf") @PublicationReference(author="Wikipedia",title="Particle filter",type=WebPage,year=2009,url="http://en.wikipedia.org/wiki/Particle_filter") public interface ParticleFilter<ObservationType,ParameterType> extends RecursiveBayesianEstimator<ObservationType,ParameterType,DataDistribution<ParameterType>>, Randomized
Modifier and Type | Interface and Description |
---|---|
static interface |
ParticleFilter.Updater<ObservationType,ParameterType>
Updates the particles.
|
Modifier and Type | Method and Description |
---|---|
double |
computeEffectiveParticles(DataDistribution<ParameterType> particles)
Computes the effective number of particles.
|
int |
getNumParticles()
Gets the number of particles
|
ParticleFilter.Updater<ObservationType,ParameterType> |
getUpdater()
Gets the updater
|
void |
setNumParticles(int numParticles)
Sets the number of particles
|
learn
clone
createInitialLearnedObject, update, update
getRandom, setRandom
ParticleFilter.Updater<ObservationType,ParameterType> getUpdater()
int getNumParticles()
void setNumParticles(int numParticles)
numParticles
- Number of particles.double computeEffectiveParticles(DataDistribution<ParameterType> particles)
particles
- Current state of the Particle filter.