OutputType
- Type of outputs to consider, typically a DoublePosteriorType
- Posterior distribution of the weights given the observed InputOutputPairs@PublicationReference(author="Christopher M. Bishop",title="Pattern Recognition and Machine Learning",type=Book,year=2006,pages={152,159}) @PublicationReference(author="Hanna M. Wallach",title="Introduction to Gaussian Process Regression",type=Misc,year=2005,url="http://www.cs.umass.edu/~wallach/talks/gp_intro.pdf") @PublicationReference(author="Wikipedia",title="Bayesian linear regression",type=WebPage,year=2010,url="http://en.wikipedia.org/wiki/Bayesian_linear_regression") public interface BayesianRegression<OutputType,PosteriorType extends Distribution<? extends Vector>> extends BayesianEstimator<InputOutputPair<? extends Vectorizable,OutputType>,Vector,PosteriorType>
Modifier and Type | Method and Description |
---|---|
Distribution<OutputType> |
createConditionalDistribution(Vectorizable input,
Vector weights)
Creates the distribution from which the outputs are generated, given
the weights and the input to consider.
|
Evaluator<? super Vectorizable,? extends ClosedFormDistribution<OutputType>> |
createPredictiveDistribution(PosteriorType posterior)
Creates the predictive distribution of outputs given the weight posterior
|
learn
clone
Distribution<OutputType> createConditionalDistribution(Vectorizable input, Vector weights)
input
- Input to condition onweights
- Weights that determine the meanEvaluator<? super Vectorizable,? extends ClosedFormDistribution<OutputType>> createPredictiveDistribution(PosteriorType posterior)
posterior
- Posterior distribution of weights.