Package | Description |
---|---|
gov.sandia.cognition.framework.learning |
Provides a mechanism for putting learned objects into the Cognitive
Framework.
|
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.baseline |
Provides baseline (dummy) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.confidence |
Provides confidence-weighted categorization algorithms.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization |
Provides minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.matrix |
Provides matrix solving algorithms.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.learning.parameter |
Provides utility classes for handling learning algorithm parameters.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.text.spelling |
Provides classes for spelling.
|
gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<LearningDataType>,? extends Evaluator<? super InputType,? extends OutputType>> |
EvaluatorBasedCognitiveModuleFactoryLearner.getLearner()
Gets the learner used to create the Evaluator for the module.
|
Modifier and Type | Method and Description |
---|---|
void |
EvaluatorBasedCognitiveModuleFactoryLearner.setLearner(BatchLearner<? super java.util.Collection<LearningDataType>,? extends Evaluator<? super InputType,? extends OutputType>> learner)
Sets the learner used to create the Evaluator for the module.
|
Constructor and Description |
---|
EvaluatorBasedCognitiveModuleFactoryLearner(BatchLearner<? super java.util.Collection<LearningDataType>,? extends Evaluator<? super InputType,? extends OutputType>> learner,
java.lang.String name,
CogxelConverter<InputType> inputConverter,
CogxelConverter<OutputType> outputConverter,
CogxelConverter<LearningDataType> learningDataConverter)
Creates a new instance of CognitiveModuleFactoryEvaluatorLearner.
|
EvaluatorBasedCognitiveModuleFactoryLearner(BatchLearner<? super java.util.Collection<LearningDataType>,? extends Evaluator<InputType,OutputType>> learner,
java.lang.String name)
Creates a new instance of CognitiveModuleFactoryEvaluatorLearner.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBatchLearnerContainer<LearnerType extends BatchLearner<?,?>>
An abstract class for objects that contain a batch learning algorithm.
|
interface |
BatchLearnerContainer<LearnerType extends BatchLearner<?,?>>
An interface for an object that contains a batch learner.
|
Modifier and Type | Interface and Description |
---|---|
interface |
AnytimeBatchLearner<DataType,ResultType>
A batch learner that is also and Anytime algorithm.
|
interface |
BatchAndIncrementalLearner<DataType,ResultType>
Interface for an algorithm that is both a batch and incremental learner.
|
interface |
BatchCostMinimizationLearner<CostParametersType,ResultType>
The
BatchCostMinimizationLearner interface defines the functionality
of a cost-minimization learning algorithm should follow. |
interface |
SupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
Interface for a class that is a supervised learning algorithm that can be
used both batch and incremental contexts.
|
interface |
SupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The
BatchSupervisedLearner interface is an extension of the
BatchLearner interface that contains the typical generic definition
conventions for a batch, supervised learning algorithm. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeBatchLearner<DataType,ResultType>
The
AbstractAnytimeBatchLearner abstract class
implements a standard method for conforming to the BatchLearner and
AnytimeLearner (IterativeAlgorithm and
StoppableAlgorithm ) interfaces. |
class |
AbstractAnytimeSupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The
AbstractAnytimeSupervisedBatchLearner abstract class extends
the AbstractAnytimeBatchLearner to implement the
SupervisedBatchLearner interface. |
class |
AbstractBatchAndIncrementalLearner<DataType,ResultType>
An abstract class that has both batch learning ability as well as online
learning ability by taking a Collection of input data.
|
class |
AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
An abstract implementation of the batch and incremental learning for
an incremental supervised learner.
|
class |
CompositeBatchLearnerPair<InputType,IntermediateType,OutputType>
Composes together a pair of batch (typically unsupervised) learners.
|
class |
InputOutputTransformedBatchLearner<InputType,TransformedInputType,TransformedOutputType,OutputType>
An adapter class for performing supervised learning from data where both
the input and output have to be transformed before they are passed to the
learning algorithm.
|
class |
SequencePredictionLearner<DataType,LearnedType>
A wrapper learner that converts an unlabeled sequence of data into a sequence
of prediction data using a fixed prediction horizon.
|
class |
TimeSeriesPredictionLearner<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A learner used to predict the future of a sequence of data by wrapping
another learner and created a future-aligned data set.
|
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> |
CompositeBatchLearnerPair.firstLearner
The first learner that is trained on the input data.
|
protected BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> |
InputOutputTransformedBatchLearner.inputLearner
The unsupervised learning algorithm for creating the input
transformation.
|
protected LearnerType |
AbstractBatchLearnerContainer.learner
The wrapped learner.
|
protected BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> |
InputOutputTransformedBatchLearner.outputLearner
The unsupervised learning algorithm for creating the output
transformation, which must be reversible for evaluation.
|
protected BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> |
CompositeBatchLearnerPair.secondLearner
The second learner that is trained on the output of the evaluator
created by the first learner.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> |
CompositeBatchLearnerPair.getFirst() |
BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> |
CompositeBatchLearnerPair.getFirstLearner()
Gets the first learner that is applied to the input data.
|
BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> |
InputOutputTransformedBatchLearner.getInputLearner()
Gets the unsupervised learning algorithm for creating the input
transformation.
|
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> |
InputOutputTransformedBatchLearner.getOutputLearner()
Gets the unsupervised learning algorithm for creating the
output transformation, which must be reversible for evaluation.
|
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> |
CompositeBatchLearnerPair.getSecond() |
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> |
CompositeBatchLearnerPair.getSecondLearner()
Gets the second learner that is applied to the output of the first
learner.
|
Modifier and Type | Method and Description |
---|---|
static <InputType,IntermediateType,OutputType> |
CompositeBatchLearnerPair.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> firstLearner,
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> secondLearner)
Creates a new
CompositeBatchLearnerPair from the given learners. |
static <InputType,IntermediateType,OutputType> |
CompositeBatchLearnerPair.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> firstLearner,
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> secondLearner)
Creates a new
CompositeBatchLearnerPair from the given learners. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
three learners. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
three learners. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
three learners. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
unsupervised input transform learner, supervised learners, and output
transform. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
unsupervised input transform learner, supervised learners, and output
transform. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
input transform, supervised learner, and unsupervised output transform
learner. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
input transform, supervised learner, and unsupervised output transform
learner. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
predefined input and output transforms and the supervised learner. |
static <InputType,TransformedInputType,OutputType> |
InputOutputTransformedBatchLearner.createInputTransformed(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,OutputType>>,? extends Evaluator<? super TransformedInputType,? extends OutputType>> learner)
Creates a new
InputOutputTransformedBatchLearner from the
input and supervised learners, performing no transformation on the
output type. |
static <InputType,TransformedInputType,OutputType> |
InputOutputTransformedBatchLearner.createInputTransformed(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,OutputType>>,? extends Evaluator<? super TransformedInputType,? extends OutputType>> learner)
Creates a new
InputOutputTransformedBatchLearner from the
input and supervised learners, performing no transformation on the
output type. |
static <InputType,IntermediateType,OutputType> |
CompositeBatchLearnerPair.createInputTransformed(Evaluator<? super InputType,? extends IntermediateType> inputTransform,
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> learner)
Creates a new
CompositeBatchLearnerPair from the given input
transform and learner. |
static <InputType,TransformedInputType,OutputType> |
InputOutputTransformedBatchLearner.createInputTransformed(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,OutputType>>,? extends Evaluator<? super TransformedInputType,? extends OutputType>> learner)
Creates a new
InputOutputTransformedBatchLearner from the
predefined input transform and the supervised learner. |
static <InputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,TransformedOutputType>>,? extends Evaluator<? super InputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
supervised and output learners, performing no transformation on the
input type. |
static <InputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,TransformedOutputType>>,? extends Evaluator<? super InputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
supervised and output learners, performing no transformation on the
input type. |
static <InputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,TransformedOutputType>>,? extends Evaluator<? super InputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
predefined output transforms and the supervised learner. |
static <InputType,IntermediateType,OutputType> |
CompositeBatchLearnerPair.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> learner,
Evaluator<? super IntermediateType,? extends OutputType> outputTransform)
Creates a new
CompositeBatchLearnerPair from the given learner
and output transform.. |
void |
CompositeBatchLearnerPair.setFirstLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> firstLearner)
Sets the first learner that is applied to the input data.
|
void |
InputOutputTransformedBatchLearner.setInputLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner)
Sets the unsupervised learning algorithm for creating the input
transformation.
|
void |
InputOutputTransformedBatchLearner.setOutputLearner(BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Gets the unsupervised learning algorithm for creating the
output transformation, which must be reversible for evaluation.
|
void |
CompositeBatchLearnerPair.setSecondLearner(BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> secondLearner)
Sets the second learner that is applied to the output of the first
learner.
|
Constructor and Description |
---|
CompositeBatchLearnerPair(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> firstLearner,
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> secondLearner)
Creates a new
CompositeBatchLearnerPair with the given two
learner. |
CompositeBatchLearnerPair(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends IntermediateType>> firstLearner,
BatchLearner<? super java.util.Collection<? extends IntermediateType>,? extends Evaluator<? super IntermediateType,? extends OutputType>> secondLearner)
Creates a new
CompositeBatchLearnerPair with the given two
learner. |
InputOutputTransformedBatchLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner with the given
learners. |
InputOutputTransformedBatchLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner with the given
learners. |
InputOutputTransformedBatchLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner with the given
learners. |
SequencePredictionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends DataType,DataType>>,? extends LearnedType> learner,
int predictionHorizon)
Creates a new
SequencePredictionLearner with the given learner
and prediction horizon. |
Modifier and Type | Class and Description |
---|---|
class |
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
using the provided cost function and perturbation function.
|
Modifier and Type | Class and Description |
---|---|
class |
ConstantLearner<ValueType>
A learner that always returns the same value as the result.
|
class |
IdentityLearner<ValueType>
A batch learner implementation that just returns its inputs, creating an
identity function.
|
class |
MeanLearner
The
MeanLearner class implements a baseline learner that computes
the mean of a given set of values. |
class |
MostFrequentLearner<OutputType>
The
MostFrequentLearner class implements a baseline learner that
computes the most frequent output value. |
class |
WeightedMeanLearner
The
WeightedMeanLearner class implements a baseline learner that
computes the weighted mean output value. |
class |
WeightedMostFrequentLearner<OutputType>
The
WeightedMostFrequentLearner class implements a baseline learning
algorithm that finds the most frequent output of a given dataset based on
the weights of the examples. |
Modifier and Type | Class and Description |
---|---|
static class |
DiscreteNaiveBayesCategorizer.Learner<InputType,CategoryType>
Learner for a DiscreteNaiveBayesCategorizer.
|
static class |
VectorNaiveBayesCategorizer.BatchGaussianLearner<CategoryType>
A supervised batch distributionLearner for a vector Naive Bayes categorizer that fits
a Gaussian.
|
static class |
VectorNaiveBayesCategorizer.Learner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
A supervised batch distributionLearner for a vector Naive Bayes categorizer.
|
static class |
VectorNaiveBayesCategorizer.OnlineLearner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
An online (incremental) distributionLearner for the Naive Bayes
categorizer that uses an incremental distribution learner for the
distribution representing each dimension for each category.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BatchClusterer<DataType,ClusterType extends Cluster<DataType>>
The
BatchClusterer interface defines the functionality of a batch
clustering algorithm. |
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagation<DataType>
The
AffinityPropagation algorithm requires three parameters:
a divergence function, a value to use for self-divergence, and a damping
factor (called lambda in the paper; 0.5 is the default). |
class |
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
class |
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
class |
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
class |
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
class |
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
not have sufficient membership to pass a simple statistical significance
test.
|
class |
MiniBatchKMeansClusterer<DataType extends Vector>
Approximates k-means clustering by working on random subsets of the
data.
|
class |
OptimizedKMeansClusterer<DataType>
This class implements an optimized version of the k-means algorithm that
makes use of the triangle inequality to compute the same answer as k-means
while using less distance calculations.
|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
class |
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveRegularizationOfWeights
An implementation of the Adaptive Regularization of Weights (AROW) algorithm
for online learning of a linear binary categorizer.
|
class |
ConfidenceWeightedDiagonalDeviation
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalDeviationProject
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalVariance
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
class |
ConfidenceWeightedDiagonalVarianceProject
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
static class |
AbstractDeltaCategorizer.AbstractLearner<CategoryType>
Abstract learner for delta algorithms.
|
static class |
BurrowsDeltaCategorizer.Learner<CategoryType>
Learner for a BurrowsDeltaCategorizer.
|
static class |
CosineDeltaCategorizer.Learner<CategoryType>
Learner for a CosineDeltaCategorizer.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BagBasedCategorizerEnsembleLearner<InputType,CategoryType>
Interface for a bag-based ensemble learner.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaggingLearner<InputType,OutputType,MemberType,EnsembleType extends Evaluator<? super InputType,? extends OutputType>>
Learns an ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
AdaBoost<InputType>
The
AdaBoost class implements the Adaptive Boosting (AdaBoost)
algorithm formulated by Yoav Freund and Robert Shapire. |
class |
BaggingCategorizerLearner<InputType,CategoryType>
Learns an categorization ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BaggingRegressionLearner<InputType>
Learns an ensemble for regression by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BinaryBaggingLearner<InputType>
The
BinaryBaggingLearner implements the Bagging learning algorithm. |
class |
BinaryCategorizerSelector<InputType>
The
BinaryCategorizerSelector class implements a "weak learner"
meant for use in boosting algorithms that selects the best
BinaryCategorizer from a pre-set list by picking the one with the
best weighted error. |
class |
CategoryBalancedBaggingLearner<InputType,CategoryType>
An extension of the basic bagging learner that attempts to sample bags that
have equal numbers of examples from every category.
|
class |
CategoryBalancedIVotingLearner<InputType,CategoryType>
An extension of IVoting for dealing with skew problems that makes sure that
there are an equal number of examples from each category in each sample that
an ensemble member is trained on.
|
class |
IVotingCategorizerLearner<InputType,CategoryType>
Learns an ensemble in a method similar to bagging except that on each
iteration the bag is built from two parts, each sampled from elements from
disjoint sets.
|
class |
MultiCategoryAdaBoost<InputType,CategoryType>
An implementation of a multi-class version of the Adaptive Boosting
(AdaBoost) algorithm, known as AdaBoost.M1.
|
class |
OnlineBaggingCategorizerLearner<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An implementation of an online version of the Bagging algorithm for learning
an ensemble of categorizers.
|
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> |
AbstractBaggingLearner.learner
The learner to use to create the categorizer for each iteration.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
IVotingCategorizerLearner.learner
The learner used to produce each ensemble member.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.weakLearner
The "weak learner" that must learn from the weighted input-output pairs
on each iteration.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.weakLearner
The "weak learner" that must learn from the weighted input-output pairs
on each iteration.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> |
AbstractBaggingLearner.getLearner()
Gets the learner used to learn each ensemble member.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.getLearner() |
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
IVotingCategorizerLearner.getLearner()
Gets the learner used to learn each ensemble member.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.getLearner() |
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.getWeakLearner()
Gets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.getWeakLearner()
Gets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
Modifier and Type | Method and Description |
---|---|
void |
IVotingCategorizerLearner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Sets the learner used to learn each ensemble member.
|
void |
AbstractBaggingLearner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner)
Sets the learner used to learn each ensemble member.
|
void |
AdaBoost.setWeakLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner)
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
void |
MultiCategoryAdaBoost.setWeakLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> weakLearner)
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
Constructor and Description |
---|
AbstractBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner)
Creates a new instance of AbstractBaggingLearner.
|
AbstractBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of AbstractBaggingLearner.
|
AdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner)
Creates a new instance of AdaBoost.
|
AdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner,
int maxIterations)
Creates a new instance of AdaBoost.
|
BaggingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new instance of BaggingCategorizerLearner.
|
BaggingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BaggingCategorizerLearner.
|
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner)
Creates a new instance of BaggingRegressionLearner.
|
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BaggingRegressionLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
MultiCategoryAdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> weakLearner,
int maxIterations)
Creates a new
MultiCategoryAdaBoost with the given parameters. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractFactorizationMachineLearner
An abstract class for learning
FactorizationMachine s. |
class |
FactorizationMachineAlternatingLeastSquares
Implements an Alternating Least Squares (ALS) algorithm for learning a
Factorization Machine.
|
class |
FactorizationMachineStochasticGradient
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
Factorization Machine.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
that uses a given cost function to minimize and a given reproduction
function for generating the population.
|
class |
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaumWelchAlgorithm<ObservationType,DataType>
Partial implementation of the Baum-Welch algorithm.
|
class |
BaumWelchAlgorithm<ObservationType>
Implements the Baum-Welch algorithm, also known as the "forward-backward
algorithm", the expectation-maximization algorithm, etc for
Hidden Markov Models (HMMs).
|
class |
ParallelBaumWelchAlgorithm<ObservationType>
A Parallelized implementation of some of the methods of the
Baum-Welch Algorithm.
|
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
AbstractBaumWelchAlgorithm.distributionLearner
Learner for the Distribution Functions of the HMM.
|
protected BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
ParallelBaumWelchAlgorithm.DistributionEstimatorTask.distributionLearner
My copy of the PDF estimator.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
AbstractBaumWelchAlgorithm.getDistributionLearner()
Getter for distributionLearner
|
Modifier and Type | Method and Description |
---|---|
static <ObservationType> |
HiddenMarkovModel.createRandom(int numStates,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> learner,
java.util.Collection<? extends ObservationType> data,
java.util.Random random)
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
|
void |
AbstractBaumWelchAlgorithm.setDistributionLearner(BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner)
Setter for distributionLearner
|
Constructor and Description |
---|
AbstractBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of AbstractBaumWelchAlgorithm
|
BaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of BaumWelchAlgorithm
|
DistributionEstimatorTask(java.util.Collection<? extends ObservationType> data,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
int index)
Creates an instance of DistributionEstimatorTask
|
ParallelBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of ParallelBaumWelchAlgorithm
|
Modifier and Type | Interface and Description |
---|---|
interface |
FunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
Interface for unconstrained minimization of nonlinear functions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeFunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A partial implementation of a minimization algorithm that is iterative,
stoppable, and approximate.
|
class |
FunctionMinimizerBFGS
Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
nonlinear minimization algorithm.
|
class |
FunctionMinimizerConjugateGradient
Conjugate gradient method is a class of algorithms for finding the
unconstrained local minimum of a nonlinear function.
|
class |
FunctionMinimizerDFP
Implementation of the Davidon-Fletcher-Powell (DFP) formula for a
Quasi-Newton minimization update.
|
class |
FunctionMinimizerDirectionSetPowell
Implementation of the derivative-free unconstrained nonlinear direction-set
minimization algorithm called "Powell's Method" by Numerical Recipes.
|
class |
FunctionMinimizerFletcherReeves
This is an implementation of the Fletcher-Reeves conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerGradientDescent
This is an implementation of the classic Gradient Descent algorithm, also
known as Steepest Descent, Backpropagation (for neural nets), or Hill
Climbing.
|
class |
FunctionMinimizerLiuStorey
This is an implementation of the Liu-Storey conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerNelderMead
Implementation of the Downhill Simplex minimization algorithm, also known as
the Nelder-Mead method.
|
class |
FunctionMinimizerPolakRibiere
This is an implementation of the Polack-Ribiere conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerQuasiNewton
This is an abstract implementation of the Quasi-Newton minimization method,
sometimes called "Variable-Metric methods."
This family of minimization algorithms uses first-order gradient information
to find a locally minimum to a scalar function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Defines the functionality of a line-minimization algorithm, often called a
"line search" algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeLineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial AnytimeAlgorithm implementation of a LineMinimizer.
|
class |
LineMinimizerBacktracking
Implementation of the backtracking line-minimization algorithm.
|
class |
LineMinimizerDerivativeBased
This is an implementation of a line-minimization algorithm proposed by
Fletcher that makes extensive use of first-order derivative information.
|
class |
LineMinimizerDerivativeFree
This is an implementation of a LineMinimizer that does not require
derivative information.
|
Modifier and Type | Class and Description |
---|---|
class |
ConjugateGradientMatrixSolver
Implements a matrix solver using Conjugate Gradient.
|
class |
ConjugateGradientWithPreconditionerMatrixSolver
Implements a matrix solver using Conjugate Gradient with a preconditioner.
|
class |
IterativeMatrixSolver<Operator extends MatrixVectorMultiplier>
Base class for all iterative matrix solvers that takes care of most of the
basic iterative logic and the function minimizer interface.
|
class |
OverconstrainedConjugateGradientMatrixMinimizer
Implements a overconstrained conjugate gradient matrix optimizer.
|
class |
SteepestDescentMatrixSolver
Implements a basic Steepest Descent iterative solver for linear systems of
equations.
|
Modifier and Type | Class and Description |
---|---|
static class |
KNearestNeighborExhaustive.Learner<InputType,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighborExhaustive
from a given dataset, simply a pass-through to the constructor of
KNearestNeighborExhaustive
|
static class |
KNearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighbor
from a given dataset, simply a pass-through to the constructor of
KNearestNeighbor
|
static class |
NearestNeighborExhaustive.Learner<InputType,OutputType>
The
NearestNeighborExhaustive.Learner class implements a batch learner for
the NearestNeighborExhaustive class. |
static class |
NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new NearestNeighbor
from a given dataset, simply a pass-through to the constructor of
NearestNeighbor
|
Modifier and Type | Interface and Description |
---|---|
interface |
PrincipalComponentsAnalysis
Principal Components Analysis is a family of algorithms that map from a
high-dimensional input space to a low-dimensional output space.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractPrincipalComponentsAnalysis
Abstract implementation of PCA.
|
class |
GeneralizedHebbianAlgorithm
Implementation of the Generalized Hebbian Algorithm, also known as
Sanger's Rule, which is a generalization of Oja's Rule.
|
class |
KernelPrincipalComponentsAnalysis<DataType>
An implementation of the Kernel Principal Components Analysis (KPCA)
algorithm.
|
class |
ThinSingularValueDecomposition
Computes the "thin" singular value decomposition of a dataset.
|
Modifier and Type | Interface and Description |
---|---|
interface |
KernelizableBinaryCategorizerOnlineLearner
Interface for an online learner of a linear binary categorizer that can also
be used with a kernel function.
|
interface |
LinearizableBinaryCategorizerOnlineLearner<InputType>
Interface for an online learner of a kernel binary categorizer that can also
be used for learning a linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKernelizableBinaryCategorizerOnlineLearner
An abstract implementation of the
KernelizableBinaryCategorizerOnlineLearner
interface. |
class |
AbstractLinearCombinationOnlineLearner
An abstract class for online learning of linear binary categorizers that
take the form of a weighted sum of inputs.
|
class |
AbstractOnlineLinearBinaryCategorizerLearner
An abstract class for online (incremental) learning algorithms that produce
an
LinearBinaryCategorizer . |
class |
AggressiveRelaxedOnlineMaximumMarginAlgorithm
An implementation of the Aggressive Relaxed Online Maximum Margin Algorithm
(AROMMA).
|
class |
Ballseptron
An implementation of the Ballseptron algorithm.
|
class |
BatchMultiPerceptron<CategoryType>
Implements a multi-class version of the standard batch Perceptron learning
algorithm.
|
class |
OnlineBinaryMarginInfusedRelaxedAlgorithm
An implementation of the binary MIRA algorithm.
|
class |
OnlineMultiPerceptron<CategoryType>
An online, multiple category version of the Perceptron algorithm.
|
static class |
OnlineMultiPerceptron.ProportionalUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a proportional
weight update on all categories that are scored higher than the true
category such that the weights sum to 1.0 and are proportional how much
larger the score was for each incorrect category than the true category.
|
static class |
OnlineMultiPerceptron.UniformUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a uniform weight
update on all categories that are scored higher than the true category
such that the weights are equal and sum to -1.
|
class |
OnlinePassiveAggressivePerceptron
An implementation of the Passive-Aggressive algorithm for learning a linear
binary categorizer.
|
static class |
OnlinePassiveAggressivePerceptron.AbstractSoftMargin
An abstract class for soft-margin versions of the Passive-Aggressive
algorithm.
|
static class |
OnlinePassiveAggressivePerceptron.LinearSoftMargin
An implementation of the linear soft-margin variant of the Passive-
Aggressive algorithm (PA-I).
|
static class |
OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
An implementation of the quadratic soft-margin variant of the Passive-
Aggressive algorithm (PA-II).
|
class |
OnlinePerceptron
An online version of the classic Perceptron algorithm.
|
class |
OnlineRampPassiveAggressivePerceptron
An implementation of the Ramp Loss Passive Aggressive Perceptron (PA^R) from
the referenced paper.
|
class |
OnlineShiftingPerceptron
An implementation of the Shifting Perceptron algorithm.
|
class |
OnlineVotedPerceptron
An online version of the Voted-Perceptron algorithm.
|
class |
Perceptron
The
Perceptron class implements the standard Perceptron learning
algorithm that learns a binary classifier based on vector input. |
class |
RelaxedOnlineMaximumMarginAlgorithm
An implementation of the Relaxed Online Maximum Margin Algorithm
(ROMMA).
|
class |
Winnow
An implementation of the Winnow incremental learning algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOnlineBudgetedKernelBinaryCategorizerLearner<InputType>
An abstract implementation of the
BudgetedKernelBinaryCategorizerLearner
for online learners. |
class |
AbstractOnlineKernelBinaryCategorizerLearner<InputType>
An abstract class for an online kernel binary categorizer learner.
|
class |
Forgetron<InputType>
An implementation of the "self-tuned" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Basic<InputType>
An implementation of the "basic" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Greedy<InputType>
An implementation of the "greedy" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
class |
KernelAdatron<InputType>
The
KernelAdatron class implements an online version of the Support
Vector Machine learning algorithm. |
class |
KernelBinaryCategorizerOnlineLearnerAdapter<InputType>
A wrapper class for a
KernelizableBinaryCategorizerOnlineLearner
that allows it to be used as a batch or incremental learner over the
input type directly, rather than using utility methods. |
class |
KernelPerceptron<InputType>
The
KernelPerceptron class implements the kernel version of
the Perceptron algorithm. |
class |
OnlineKernelPerceptron<InputType>
An implementation of the online version of the Perceptron algorithm.
|
class |
OnlineKernelRandomizedBudgetPerceptron<InputType>
An implementation of a fixed-memory kernel Perceptron algorithm.
|
class |
Projectron<InputType>
An implementation of the Projectron algorithm, which is an online kernel
binary categorizer learner that has a budget parameter tuned by the eta
parameter.
|
static class |
Projectron.LinearSoftMargin<InputType>
An implementation of the Projectron++ algorithm, which is an online
kernel binary categorizer learner that has a budget parameter tuned by
the eta parameter.
|
class |
RemoveOldestKernelPerceptron<InputType>
A budget kernel Perceptron that always removes the oldest item.
|
class |
Stoptron<InputType>
An online, budgeted, kernel version of the Perceptron algorithm that stops
learning once it has reached its budget.
|
Modifier and Type | Interface and Description |
---|---|
interface |
MultivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends Vectorizable>>
A regression algorithm that maps one or more independent (input) variables
onto multiple output variables.
|
interface |
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
|
interface |
Regression<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A supervised learning algorithm that attempts to interpolate/extrapolate
inputs given a training set of input/output pairs.
|
interface |
UnivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends java.lang.Double>>
A type of Regression algorithm that has a single dependent (output) variable
that we are trying to predict.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLogisticRegression<InputType,OutputType,FunctionType extends Evaluator<? super InputType,OutputType>>
Abstract partial implementation for logistic regression classes.
|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
class |
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
|
class |
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure.
|
class |
KernelBasedIterativeRegression<InputType>
The
KernelBasedIterativeRegression class implements an online version of
the Support Vector Regression algorithm. |
class |
KernelWeightedRobustRegression<InputType,OutputType>
KernelWeightedRobustRegression takes a supervised learning algorithm that
operates on a weighted collection of InputOutputPairs and modifies the
weight of a sample based on the dataset output and its corresponding
estimate from the Evaluator from the supervised learning algorithm at each
iteration.
|
class |
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators.
|
class |
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
Levenberg-Marquardt Estimation (or LMA).
|
class |
LinearBasisRegression<InputType>
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
class |
LinearRegression
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
static class |
LocallyWeightedFunction.Learner<InputType,OutputType>
Learning algorithm for creating LocallyWeightedFunctions.
|
class |
LogisticRegression
Performs Logistic Regression by means of the iterative reweighted least
squares (IRLS) algorithm, where the logistic function has an explicit bias
term, and a diagonal L2 regularization term.
|
class |
MultivariateLinearRegression
Performs multivariate regression with an explicit bias term, with optional
L2 regularization.
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|
class |
UnivariateLinearRegression
An implementation of simple univariate linear regression.
|
Modifier and Type | Interface and Description |
---|---|
interface |
RootBracketer
Defines the functionality of a algorithm that finds a bracket of a root
from an initial guess.
|
interface |
RootFinder
Defines the functionality of a root-finding algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBracketedRootFinder
Partial implementation of RootFinder that maintains a bracket on the root.
|
class |
AbstractRootFinder
Partial implementation of RootFinder.
|
class |
MinimizerBasedRootFinder
A root finder that uses minimization techniques to find the roots
(zero-crossings).
|
class |
RootBracketExpander
The root-bracketing expansion algorithm.
|
class |
RootFinderBisectionMethod
Bisection algorithm for root finding.
|
class |
RootFinderFalsePositionMethod
The false-position algorithm for root finding.
|
class |
RootFinderNewtonsMethod
Newton's method, sometimes called Newton-Raphson method, uses first-order
derivative information to iteratively locate a root.
|
class |
RootFinderRiddersMethod
The root-finding algorithm due to Ridders.
|
class |
RootFinderSecantMethod
The secant algorithm for root finding.
|
Modifier and Type | Class and Description |
---|---|
class |
PrimalEstimatedSubGradient
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
algorithm for learning a linear support vector machine (SVM).
|
class |
SequentialMinimalOptimization<InputType>
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
training a Support Vector Machine (SVM), which is a kernel-based binary
categorizer.
|
class |
SuccessiveOverrelaxation<InputType>
The
SuccessiveOverrelaxation class implements the Successive
Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM). |
Modifier and Type | Interface and Description |
---|---|
interface |
DeciderLearner<InputType,OutputType,CategoryType,DeciderType extends Categorizer<? super InputType,? extends CategoryType>>
The
DeciderLearner interface defines the functionality of a learner
that can be used to learn a decision function inside a decision tree. |
interface |
VectorThresholdLearner<OutputType>
An interface class for decider learners that produce a threshold function
on a vector element based on maximizing some gain value.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractVectorThresholdMaximumGainLearner<OutputType>
An abstract class for decider learners that produce a threshold function
on a vector element based on maximizing some gain value.
|
class |
CategorizationTreeLearner<InputType,OutputType>
The
CategorizationTreeLearner class implements a supervised learning
algorithm for learning a categorization tree. |
class |
RandomSubVectorThresholdLearner<OutputType>
Learns a decision function by taking a randomly sampling a subspace from
a given set of input vectors and then learning a threshold function by
passing the subspace vectors to a sublearner.
|
class |
RegressionTreeLearner<InputType>
The
RegressionTreeLearner class implements a learning algorithm for
a regression tree that makes use of a decider learner and a regression
learner. |
class |
VectorThresholdGiniImpurityLearner<OutputType>
Learns vector thresholds based on the Gini impurity measure.
|
class |
VectorThresholdHellingerDistanceLearner<OutputType>
A categorization tree decision function learner on vector data that learns a
vector value threshold function using the Hellinger distance.
|
class |
VectorThresholdInformationGainLearner<OutputType>
The
VectorThresholdInformationGainLearner computes the best
threshold over a dataset of vectors using information gain to determine the
optimal index and threshold. |
class |
VectorThresholdVarianceLearner
The
VectorThresholdVarianceLearner computes the best threshold over
a dataset of vectors using the reduction in variance to determine the
optimal index and threshold. |
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> |
RegressionTreeLearner.regressionLearner
The learning algorithm for the regression function.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> |
RegressionTreeLearner.getRegressionLearner()
Gets the regression learner that is to be used to fit a function
approximator to the values in the tree.
|
Modifier and Type | Method and Description |
---|---|
void |
RegressionTreeLearner.setRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner)
Sets the regression learner that is to be used to fit a function
approximator to the values in the tree.
|
Constructor and Description |
---|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner)
Creates a new instance of CategorizationTreeLearner.
|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner,
int leafCountThreshold,
int maxDepth)
Creates a new instance of CategorizationTreeLearner.
|
Modifier and Type | Class and Description |
---|---|
static class |
MultivariateDecorrelator.DiagonalCovarianceLearner
The
DiagonalCovarianceLearner class implements a BatchLearner
object for a MultivariateDecorrelator . |
static class |
MultivariateDecorrelator.FullCovarianceLearner
The
FullCovarianceLearner class implements a BatchLearner
object for a MultivariateDecorrelator . |
class |
RandomSubspace
Selects a random subspace from the given vector, which is a random set of
indices.
|
static class |
StandardDistributionNormalizer.Learner
The
Learner class implements a BatchLearner object for
a StandardDistributionNormalizer . |
Modifier and Type | Field and Description |
---|---|
protected Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.learners
The learners that the experiment is being performed on.
|
protected Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.learners
The learners that the experiment is being performed on.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputDataType>,? extends LearnedType> |
LearnerRepeatExperiment.getLearner()
Gets the learner the experiment is being run on.
|
BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> |
LearnerValidationExperiment.getLearner()
Gets the learner the experiment is being run on.
|
Modifier and Type | Method and Description |
---|---|
Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.getLearners()
Gets the learners the experiment is being run on.
|
Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> |
LearnerComparisonExperiment.getLearners()
Gets the learners the experiment is being run on.
|
Modifier and Type | Method and Description |
---|---|
LearnerComparisonExperiment.Result<SummaryType> |
LearnerComparisonExperiment.evaluate(BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner1,
BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner2,
java.util.Collection<? extends InputDataType> data)
Evaluates the two batch learners using the given data on the same set of
validation folds and returns the resulting information including the
confidence statistic that the two are different along with the summary
of their performance.
|
LearnerComparisonExperiment.Result<SummaryType> |
LearnerComparisonExperiment.evaluate(BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner1,
BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner2,
java.util.Collection<? extends InputDataType> data)
Evaluates the two batch learners using the given data on the same set of
validation folds and returns the resulting information including the
confidence statistic that the two are different along with the summary
of their performance.
|
SummaryType |
LearnerValidationExperiment.evaluate(BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner,
java.util.Collection<? extends InputDataType> data)
Deprecated.
Use evaluatePerformance instead.
Performs the experiment.
|
SummaryType |
LearnerValidationExperiment.evaluatePerformance(BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner,
java.util.Collection<? extends InputDataType> data) |
SummaryType |
LearnerRepeatExperiment.evaluatePerformance(BatchLearner<? super java.util.Collection<? extends InputDataType>,? extends LearnedType> learner,
PartitionedDataset<? extends InputDataType> data)
Performs the experiment.
|
protected void |
LearnerValidationExperiment.setLearner(BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType> learner)
Sets the learner the experiment is being run on.
|
protected void |
LearnerRepeatExperiment.setLearner(BatchLearner<? super java.util.Collection<? extends InputDataType>,? extends LearnedType> learner)
Sets the learner the experiment is being run on.
|
Modifier and Type | Method and Description |
---|---|
LearnerComparisonExperiment.Result<SummaryType> |
LearnerComparisonExperiment.evaluate(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners,
java.util.Collection<? extends InputDataType> data)
Evaluates the two batch learners using the given data on the same set of
validation folds and returns the resulting information including the
confidence statistic that the two are different along with the summary
of their performance.
|
LearnerComparisonExperiment.Result<SummaryType> |
LearnerComparisonExperiment.evaluate(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners,
java.util.Collection<? extends InputDataType> data)
Evaluates the two batch learners using the given data on the same set of
validation folds and returns the resulting information including the
confidence statistic that the two are different along with the summary
of their performance.
|
protected void |
LearnerComparisonExperiment.setLearners(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners)
Sets the learners the experiment is being run on.
|
protected void |
LearnerComparisonExperiment.setLearners(Pair<BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>,BatchLearner<? super java.util.Collection<? extends FoldDataType>,? extends LearnedType>> learners)
Sets the learners the experiment is being run on.
|
Modifier and Type | Class and Description |
---|---|
static class |
BinaryVersusCategorizer.Learner<InputType,CategoryType>
A learner for the
BinaryVersusCategorizer . |
static class |
EvaluatorToCategorizerAdapter.Learner<InputType,CategoryType>
The
EvaluatorToCategorizerAdapter.Learner class implements a
simple supervised learner for a EvaluatorToCategorizerAdapter . |
static class |
FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
This class implements a closed form solver for the Fisher linear
discriminant binary categorizer.
|
static class |
MaximumAPosterioriCategorizer.Learner<ObservationType,CategoryType>
Learner for the MAP categorizer
|
static class |
WinnerTakeAllCategorizer.Learner<InputType,CategoryType>
A learner for the adapter.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<java.util.Collection<? extends ObservationType>,? extends ComputableDistribution<ObservationType>> |
MaximumAPosterioriCategorizer.Learner.getConditionalLearner()
Getter for conditionalLearner
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
EvaluatorToCategorizerAdapter.Learner.getLearner()
Gets the learner whose output is to be adapted to be a categorizer.
|
Modifier and Type | Method and Description |
---|---|
void |
MaximumAPosterioriCategorizer.Learner.setConditionalLearner(BatchLearner<java.util.Collection<? extends ObservationType>,? extends ComputableDistribution<ObservationType>> conditionalLearner)
Setter for conditionalLearner
|
void |
EvaluatorToCategorizerAdapter.Learner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Sets the learner whose output is to be adapted to be a categorizer.
|
Constructor and Description |
---|
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,java.lang.Boolean>> learner)
Creates a new
BinaryVersusCategorizer.Learner with an
binary categorizer learner to learn category versus category. |
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new
EvaluatorToCategorizerAdapter . |
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,Evaluator<? super InputType,? extends Vectorizable>> learner)
Creates a new learner adapter with the given internal learner.
|
Learner(BatchLearner<java.util.Collection<? extends ObservationType>,? extends ComputableDistribution<ObservationType>> conditionalLearner)
Creates a new instance of Learner
|
Modifier and Type | Class and Description |
---|---|
static class |
DivergencesEvaluator.Learner<DataType,InputType,ValueType>
A learner adapter for the
DivergencesEvaluator . |
Modifier and Type | Method and Description |
---|---|
static <DataType,InputType,ValueType> |
DivergencesEvaluator.Learner.create(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Convenience method for creating a
DivergencesEvaluator.Learner . |
Constructor and Description |
---|
Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Creates a new
DivergenceFunction.Learner with the given
properties. |
Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
VectorFactory<?> vectorFactory)
Creates a new
DivergenceFunction.Learner with the given
properties. |
Modifier and Type | Class and Description |
---|---|
static class |
PolynomialFunction.Regression
Performs Linear Regression using an arbitrary set of
PolynomialFunction basis functions
|
static class |
VectorFunctionToScalarFunction.Learner<InputType>
The
VectorFunctionToScalarFunction.Learner class implements a
simple learner for a VectorFunctionToScalarFunction that allows
a learning algorithm that outputs a vector function to be adapted to
learn on data whose output are doubles. |
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,? extends Evaluator<? super InputType,? extends Vectorizable>> |
VectorFunctionToScalarFunction.Learner.vectorLearner
The supervised learner that learns on vectors as outputs.
|
Constructor and Description |
---|
Learner(BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,? extends Evaluator<? super InputType,? extends Vectorizable>> vectorLearner)
Creates a new
VectorFunctionToScalarFunction.Learner . |
Modifier and Type | Class and Description |
---|---|
static class |
GaussianContextRecognizer.Learner
Creates a GaussianContextRecognizer from a Dataset[Vector] using
a BatchClusterer
|
Modifier and Type | Class and Description |
---|---|
class |
ParameterAdaptableBatchLearnerWrapper<DataType,ResultType,LearnerType extends BatchLearner<? super DataType,? extends ResultType>>
A wrapper for adding parameter adapters to a batch learner.
|
Modifier and Type | Class and Description |
---|---|
class |
ParameterAdaptableBatchLearnerWrapper<DataType,ResultType,LearnerType extends BatchLearner<? super DataType,? extends ResultType>>
A wrapper for adding parameter adapters to a batch learner.
|
Modifier and Type | Method and Description |
---|---|
static <DataType,ResultType,LearnerType extends BatchLearner<? super DataType,? extends ResultType>> |
ParameterAdaptableBatchLearnerWrapper.create(LearnerType learner)
A convenience method for creating the wrapper for a learner.
|
Modifier and Type | Interface and Description |
---|---|
interface |
DistributionEstimator<ObservationType,DistributionType extends Distribution<? extends ObservationType>>
A BatchLearner that estimates a Distribution.
|
interface |
DistributionWeightedEstimator<ObservationType,DistributionType extends Distribution<? extends ObservationType>>
A BatchLearner that estimates a Distribution from a Collection of
weighted data.
|
interface |
IncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<? super DataType,? extends DistributionType>>
An estimator of a Distribution that uses SufficientStatistic to arrive
at its result.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractIncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
Partial implementation of
IncrementalEstimator . |
Modifier and Type | Interface and Description |
---|---|
interface |
BayesianEstimator<ObservationType,ParameterType,PosteriorType extends Distribution<? extends ParameterType>>
A type of estimation procedure based on Bayes's rule, which allows us
to estimate the uncertainty of parameters given a set of observations
that we are given.
|
interface |
BayesianEstimatorPredictor<ObservationType,ParameterType,PosteriorType extends Distribution<? extends ParameterType>>
A BayesianEstimator that can also compute the predictive distribution of
new data given the posterior.
|
interface |
BayesianRegression<OutputType,PosteriorType extends Distribution<? extends Vector>>
A type of regression algorithm maps a Vector space, and the
weights of this Vector space are represented as a posterior distribution
given the observed InputOutputPairs.
|
interface |
MarkovChainMonteCarlo<ObservationType,ParameterType>
Defines the functionality of a Markov chain Monte Carlo algorithm.
|
interface |
ParticleFilter<ObservationType,ParameterType>
A particle filter aims to estimate a sequence of hidden parameters
based on observed data using point-mass estimates of the posterior
distribution.
|
interface |
RecursiveBayesianEstimator<ObservationType,ParameterType,BeliefType extends Distribution<ParameterType>>
A recursive Bayesian estimator is an estimation method that uses the
previous belief of the system parameter and a single observation to refine
the estimate of the system parameter.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKalmanFilter
Contains fields useful to both Kalman filters and extended Kalman filters.
|
class |
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType>
Partial abstract implementation of MarkovChainMonteCarlo.
|
class |
AbstractParticleFilter<ObservationType,ParameterType>
Partial abstract implementation of ParticleFilter.
|
class |
BayesianLinearRegression
Computes a Bayesian linear estimator for a given feature function
and a set of observed data.
|
static class |
BayesianLinearRegression.IncrementalEstimator
Incremental estimator for BayesianLinearRegression
|
class |
BayesianRobustLinearRegression
Computes a Bayesian linear estimator for a given feature function given
a set of InputOutputPair observed values.
|
static class |
BayesianRobustLinearRegression.IncrementalEstimator
Incremental estimator for BayesianRobustLinearRegression
|
class |
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
number of clusters and the centroids of the clusters from a set of
data.
|
class |
ExtendedKalmanFilter
Implements the Extended Kalman Filter (EKF), which is an extension of the
Kalman filter that allows nonlinear motion and observation models.
|
class |
GaussianProcessRegression<InputType>
Gaussian Process Regression, is also known as Kriging, is a nonparametric
method to interpolate and extrapolate using Bayesian regression, where
the expressiveness of the estimator can grow with the data.
|
class |
ImportanceSampling<ObservationType,ParameterType>
Importance sampling is a Monte Carlo inference technique where we sample
from an easy distribution over the hidden variables (parameters) and then
weight the result by the ratio of the likelihood of the parameters given
the evidence and the likelihood of generating the parameters.
|
class |
KalmanFilter
A Kalman filter estimates the state of a dynamical system corrupted with
white Gaussian noise with observations that are corrupted with white
Gaussian noise.
|
class |
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
most general formulation of MCMC but can be slow.
|
class |
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
|
class |
RejectionSampling<ObservationType,ParameterType>
Rejection sampling is a method of inferring hidden parameters by using
an easy-to-sample-from distribution (times a scale factor) that envelopes
another distribution that is difficult to sample from.
|
class |
SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType>
An implementation of the standard Sampling Importance Resampling
particle filter.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
A Bayesian Estimator that makes use of conjugate priors, which is a
mathematical trick when the conditional and the prior result a posterior
that is the same type as the prior.
|
interface |
ConjugatePriorBayesianEstimatorPredictor<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
A conjugate prior estimator that also has a closed-form predictive posterior.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
Partial implementation of ConjugatePriorBayesianEstimator that contains a initial belief
(prior) distribution function.
|
class |
BernoulliBayesianEstimator
A Bayesian estimator for the parameter of a BernoulliDistribution using
the conjugate prior BetaDistribution.
|
class |
BinomialBayesianEstimator
A Bayesian estimator for the parameter of a Bernoulli parameter, p,
of a BinomialDistribution using the conjugate prior BetaDistribution.
|
class |
ExponentialBayesianEstimator
Conjugate prior Bayesian estimator of the "rate" parameter of an
Exponential distribution using the conjugate prior Gamma distribution.
|
class |
GammaInverseScaleBayesianEstimator
A Bayesian estimator for the scale parameter of a Gamma distribution
using the conjugate prior Gamma distribution for the inverse-scale (rate)
of the Gamma.
|
class |
MultinomialBayesianEstimator
A Bayesian estimator for the parameters of a MultinomialDistribution using
its conjugate prior distribution, the DirichletDistribution.
|
class |
MultivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a MultivariateGaussian using its conjugate
prior, which is also a MultivariateGaussian.
|
class |
MultivariateGaussianMeanCovarianceBayesianEstimator
Performs robust estimation of both the mean and covariance of a
MultivariateGaussian conditional distribution using the conjugate prior
Normal-Inverse-Wishart distribution.
|
class |
PoissonBayesianEstimator
A Bayesian estimator for the parameter of a PoissonDistribution using
the conjugate prior GammaDistribution.
|
class |
UniformDistributionBayesianEstimator
A Bayesian estimator for a conditional Uniform(0,theta) distribution using
its conjugate prior Pareto distribution.
|
class |
UnivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a UnivariateGaussian using its conjugate
prior, which is also a UnivariateGaussian.
|
class |
UnivariateGaussianMeanVarianceBayesianEstimator
Computes the mean and variance of a univariate Gaussian using the
conjugate prior NormalInverseGammaDistribution
|
Modifier and Type | Class and Description |
---|---|
static class |
BetaBinomialDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta-binomial distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
BinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
DefaultDataDistribution.Estimator<KeyType>
Estimator for a DefaultDataDistribution
|
static class |
DefaultDataDistribution.WeightedEstimator<KeyType>
A weighted estimator for a DefaultDataDistribution
|
static class |
ExponentialDistribution.MaximumLikelihoodEstimator
Creates a ExponentialDistribution from data
|
static class |
ExponentialDistribution.WeightedMaximumLikelihoodEstimator
Creates a ExponentialDistribution from weighted data
|
static class |
GammaDistribution.MomentMatchingEstimator
Computes the parameters of a Gamma distribution by the
Method of Moments
|
static class |
GammaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Gamma distribution using the matching
of moments, not maximum likelihood.
|
static class |
GeometricDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
LaplaceDistribution.MaximumLikelihoodEstimator
Estimates the ML parameters of a Laplace distribution from a
Collection of Numbers.
|
static class |
LaplaceDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
static class |
LogNormalDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a log-normal distribution.
|
static class |
LogNormalDistribution.WeightedMaximumLikelihoodEstimator
Maximum Likelihood Estimator from weighted data
|
static class |
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner.
|
static class |
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians
|
static class |
MultivariateGaussian.IncrementalEstimator
The estimator that creates a MultivariateGaussian from a stream of
values.
|
static class |
MultivariateGaussian.IncrementalEstimatorCovarianceInverse
The estimator that creates a MultivariateGaussian from a stream of values
by estimating the mean and covariance inverse (as opposed to the
covariance directly), without ever performing a matrix inversion.
|
static class |
MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Maximum Likelihood Estimate of the MultivariateGaussian
given a set of Vectors
|
static class |
MultivariateGaussian.WeightedMaximumLikelihoodEstimator
Computes the Weighted Maximum Likelihood Estimate of the
MultivariateGaussian given a weighted set of Vectors
|
static class |
NegativeBinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution
|
static class |
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator
Weighted maximum likelihood estimator of the distribution
|
static class |
PoissonDistribution.MaximumLikelihoodEstimator
Creates a PoissonDistribution from data
|
static class |
PoissonDistribution.WeightedMaximumLikelihoodEstimator
Creates a PoissonDistribution from weighted data.
|
static class |
ScalarDataDistribution.Estimator
Estimator for a ScalarDataDistribution
|
static class |
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data
|
static class |
StudentTDistribution.MaximumLikelihoodEstimator
Estimates the parameters of the Student-t distribution from the given
data, where the degrees of freedom are estimated from the Kurtosis
of the sample data.
|
static class |
StudentTDistribution.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
static class |
UniformDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a uniform distribution.
|
static class |
UniformIntegerDistribution.MaximumLikelihoodEstimator
Implements a maximum likelihood estimator for the discrete uniform
distribution.
|
static class |
UnivariateGaussian.IncrementalEstimator
Implements an incremental estimator for the sufficient statistics for
a UnivariateGaussian.
|
static class |
UnivariateGaussian.MaximumLikelihoodEstimator
Creates a UnivariateGaussian from data
|
static class |
UnivariateGaussian.WeightedMaximumLikelihoodEstimator
Creates a UnivariateGaussian from weighted data
|
Modifier and Type | Class and Description |
---|---|
class |
DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>>
A method of estimating the parameters of a distribution using an arbitrary
CostFunction and FunctionMinimizer algorithm.
|
class |
MaximumLikelihoodDistributionEstimator<DataType>
Estimates the most-likely distribution, and corresponding parameters, of
that generated the given data from a pre-determined collection of
candidate parameteric distributions.
|
Modifier and Type | Class and Description |
---|---|
static class |
SimpleStatisticalSpellingCorrector.Learner
A learner for the
SimpleStatisticalSpellingCorrector . |
Modifier and Type | Class and Description |
---|---|
class |
LatentDirichletAllocationVectorGibbsSampler
A Gibbs sampler for performing Latent Dirichlet Allocation (LDA).
|
class |
LatentSemanticAnalysis
Implements the Latent Semantic Analysis (LSA) algorithm using Singular Value
Decomposition (SVD).
|
class |
ParallelLatentDirichletAllocationVectorGibbsSampler
A parallel implementation of
LatentDirichletAllocationVectorGibbsSampler . |
class |
ProbabilisticLatentSemanticAnalysis
An implementation of the Probabilistic Latent Semantic Analysis (PLSA)
algorithm.
|