Package | Description |
---|---|
gov.sandia.cognition.framework.learning.converter |
Provides implementations of
CogxelConverter s. |
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.baseline |
Provides baseline (dummy) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization |
Provides minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line.interpolator |
Provides line (scalar) interpolation/extrapolation algorithms that fit an
algebraic function to a (small) collection of data points.
|
gov.sandia.cognition.learning.algorithm.minimization.matrix |
Provides matrix solving algorithms.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.learning.performance |
Provides performance measures.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
Modifier and Type | Method and Description |
---|---|
InputOutputPair<InputType,OutputType> |
CogxelInputOutputPairConverter.createPair(InputType first,
OutputType second) |
Modifier and Type | Method and Description |
---|---|
static <DataType> MultiCollection<InputOutputPair<DataType,DataType>> |
SequencePredictionLearner.createPredictionDataset(java.util.Collection<? extends DataType> data,
int predictionHorizon)
Takes a collection and creates a multi-collection of sequences of
input-output pairs that are from the given sequence with the given
prediction horizon.
|
static <InputType,OutputType> |
TimeSeriesPredictionLearner.createPredictionDataset(int predictionHorizon,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a dataset that can be used to predict the future by
"predictionHorizon" samples.
|
static <DataType> MultiCollection<InputOutputPair<DataType,DataType>> |
SequencePredictionLearner.createPredictionDataset(MultiCollection<? extends DataType> data,
int predictionHorizon)
Takes a multi-collection and creates a multi-collection of sequences of
input-output pairs that are from the given sequence with the given
prediction horizon.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractSupervisedBatchAndIncrementalLearner.update(ResultType target,
InputOutputPair<? extends InputType,OutputType> data) |
Modifier and Type | Method and Description |
---|---|
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
three learners. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
unsupervised input transform learner, supervised learners, and output
transform. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
input transform, supervised learner, and unsupervised output transform
learner. |
static <InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.create(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
predefined input and output transforms and the supervised learner. |
static <InputType,TransformedInputType,OutputType> |
InputOutputTransformedBatchLearner.createInputTransformed(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,OutputType>>,? extends Evaluator<? super TransformedInputType,? extends OutputType>> learner)
Creates a new
InputOutputTransformedBatchLearner from the
input and supervised learners, performing no transformation on the
output type. |
static <InputType,TransformedInputType,OutputType> |
InputOutputTransformedBatchLearner.createInputTransformed(Evaluator<? super InputType,? extends TransformedInputType> inputTransform,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,OutputType>>,? extends Evaluator<? super TransformedInputType,? extends OutputType>> learner)
Creates a new
InputOutputTransformedBatchLearner from the
predefined input transform and the supervised learner. |
static <InputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,TransformedOutputType>>,? extends Evaluator<? super InputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner from the
supervised and output learners, performing no transformation on the
input type. |
static <InputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.createOutputTransformed(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,TransformedOutputType>>,? extends Evaluator<? super InputType,? extends TransformedOutputType>> learner,
ReversibleEvaluator<OutputType,TransformedOutputType,?> outputTransform)
Creates a new
InputOutputTransformedBatchLearner from the
predefined output transforms and the supervised learner. |
static <InputType,OutputType> |
TimeSeriesPredictionLearner.createPredictionDataset(int predictionHorizon,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a dataset that can be used to predict the future by
"predictionHorizon" samples.
|
CompositeEvaluatorTriple<InputType,TransformedInputType,TransformedOutputType,OutputType> |
InputOutputTransformedBatchLearner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Learn by first calling the input transformation learner on all the
input values and the output transformation on the output values.
|
EvaluatorType |
TimeSeriesPredictionLearner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data) |
Constructor and Description |
---|
InputOutputTransformedBatchLearner(BatchLearner<? super java.util.Collection<? extends InputType>,? extends Evaluator<? super InputType,? extends TransformedInputType>> inputLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends TransformedInputType,TransformedOutputType>>,? extends Evaluator<? super TransformedInputType,? extends TransformedOutputType>> learner,
BatchLearner<? super java.util.Collection<? extends OutputType>,? extends ReversibleEvaluator<OutputType,TransformedOutputType,?>> outputLearner)
Creates a new
InputOutputTransformedBatchLearner with the given
learners. |
SequencePredictionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends DataType,DataType>>,? extends LearnedType> learner,
int predictionHorizon)
Creates a new
SequencePredictionLearner with the given learner
and prediction horizon. |
Modifier and Type | Method and Description |
---|---|
ConstantEvaluator<java.lang.Double> |
MeanLearner.learn(java.util.Collection<? extends InputOutputPair<?,java.lang.Double>> data)
Creates a constant evaluator that returns the mean output value of the
given dataset.
|
ConstantEvaluator<java.lang.Double> |
WeightedMeanLearner.learn(java.util.Collection<? extends InputOutputPair<?,java.lang.Double>> data)
Creates a constant evaluator for the weighted mean output value of the
given dataset.
|
ConstantEvaluator<OutputType> |
MostFrequentLearner.learn(java.util.Collection<? extends InputOutputPair<? extends java.lang.Object,OutputType>> data)
Creates a constant evaluator that for the most frequent output value of
the given dataset.
|
ConstantEvaluator<OutputType> |
WeightedMostFrequentLearner.learn(java.util.Collection<? extends InputOutputPair<? extends java.lang.Object,OutputType>> data)
Creates a constant evaluator based on the most frequent output in a given
collection of input-output pairs, taking the weight into account.
|
Modifier and Type | Method and Description |
---|---|
void |
VectorNaiveBayesCategorizer.OnlineLearner.update(VectorNaiveBayesCategorizer<CategoryType,DistributionType> target,
InputOutputPair<? extends Vectorizable,CategoryType> data) |
Modifier and Type | Method and Description |
---|---|
DiscreteNaiveBayesCategorizer<InputType,CategoryType> |
DiscreteNaiveBayesCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends java.util.Collection<InputType>,CategoryType>> data) |
VectorNaiveBayesCategorizer<CategoryType,DistributionType> |
VectorNaiveBayesCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,CategoryType>> data) |
VectorNaiveBayesCategorizer<CategoryType,UnivariateGaussian.PDF> |
VectorNaiveBayesCategorizer.BatchGaussianLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,CategoryType>> data) |
Modifier and Type | Method and Description |
---|---|
KDTree<DataType,java.lang.Double,InputOutputPair<DataType,java.lang.Double>> |
DBSCANClusterer.getSpatialIndex()
Gets the spatial index.
|
Modifier and Type | Method and Description |
---|---|
void |
DBSCANClusterer.setCreator(KDTree<DataType,java.lang.Double,InputOutputPair<DataType,java.lang.Double>> spatialIndex)
Sets the spatial index.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.Collection<? extends InputOutputPair<? extends Vector,CategoryType>> |
AbstractDeltaCategorizer.AbstractLearner.trainingSet
The training set.
|
Modifier and Type | Method and Description |
---|---|
abstract AbstractDeltaCategorizer<CategoryType> |
AbstractDeltaCategorizer.AbstractLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,CategoryType>> trainingSet)
Method that does the training.
|
BurrowsDeltaCategorizer<CategoryType> |
BurrowsDeltaCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,CategoryType>> trainingSet) |
CosineDeltaCategorizer<CategoryType> |
CosineDeltaCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,CategoryType>> trainingSet) |
Modifier and Type | Field and Description |
---|---|
protected java.util.ArrayList<InputOutputPair<? extends InputType,OutputType>> |
AbstractBaggingLearner.bag
The current bag of data.
|
protected java.util.ArrayList<InputOutputPair<? extends InputType,CategoryType>> |
IVotingCategorizerLearner.currentBag
The current bag used to train the current ensemble member.
|
protected java.util.ArrayList<? extends InputOutputPair<? extends InputType,OutputType>> |
AbstractBaggingLearner.dataList
The data stored for efficient random access.
|
protected java.util.ArrayList<? extends InputOutputPair<? extends InputType,CategoryType>> |
IVotingCategorizerLearner.dataList
The data represented as an array list.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> |
AbstractBaggingLearner.learner
The learner to use to create the categorizer for each iteration.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
IVotingCategorizerLearner.learner
The learner used to produce each ensemble member.
|
protected IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> |
OnlineBaggingCategorizerLearner.learner
The base learner used for each ensemble member.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.weakLearner
The "weak learner" that must learn from the weighted input-output pairs
on each iteration.
|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.weakLearner
The "weak learner" that must learn from the weighted input-output pairs
on each iteration.
|
Modifier and Type | Method and Description |
---|---|
InputOutputPair<? extends InputType,CategoryType> |
BagBasedCategorizerEnsembleLearner.getExample(int index)
Gets the training example at the given index.
|
InputOutputPair<? extends InputType,CategoryType> |
BaggingCategorizerLearner.getExample(int index) |
InputOutputPair<? extends InputType,CategoryType> |
IVotingCategorizerLearner.getExample(int index) |
Modifier and Type | Method and Description |
---|---|
java.util.ArrayList<InputOutputPair<? extends InputType,OutputType>> |
AbstractBaggingLearner.getBag()
Gets the most recently created bag.
|
java.util.ArrayList<? extends InputOutputPair<? extends InputType,OutputType>> |
AbstractBaggingLearner.getDataList()
Gets the data the learner is using as an array list.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> |
AbstractBaggingLearner.getLearner()
Gets the learner used to learn each ensemble member.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.getLearner() |
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
IVotingCategorizerLearner.getLearner()
Gets the learner used to learn each ensemble member.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.getLearner() |
IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> |
OnlineBaggingCategorizerLearner.getLearner()
Gets the incremental (online) learning algorithm to use to learn all of
the ensemble members.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> |
AdaBoost.getWeakLearner()
Gets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
MultiCategoryAdaBoost.getWeakLearner()
Gets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
Modifier and Type | Method and Description |
---|---|
void |
OnlineBaggingCategorizerLearner.update(VotingCategorizerEnsemble<InputType,CategoryType,MemberType> target,
InputOutputPair<? extends InputType,CategoryType> data) |
Modifier and Type | Method and Description |
---|---|
static <InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>> |
OnlineBaggingCategorizerLearner.create(IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> learner,
int ensembleSize,
double percentToSample,
java.util.Random random)
Convenience method for creating an
OnlineBaggingCategorizerLearner . |
BinaryCategorizer<? super InputType> |
BinaryCategorizerSelector.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Selects the BinaryCategorizer from its list of categorizers that
minimizes the weighted error on the given set of weighted input-output
pairs.
|
protected void |
AbstractBaggingLearner.setBag(java.util.ArrayList<InputOutputPair<? extends InputType,OutputType>> bag)
Sets the most recently created bag.
|
protected void |
AbstractBaggingLearner.setDataList(java.util.ArrayList<? extends InputOutputPair<? extends InputType,OutputType>> dataList)
Sets the data the learner is using as an array list.
|
void |
IVotingCategorizerLearner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Sets the learner used to learn each ensemble member.
|
void |
AbstractBaggingLearner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner)
Sets the learner used to learn each ensemble member.
|
void |
OnlineBaggingCategorizerLearner.setLearner(IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> learner)
Sets the incremental (online) learning algorithm to use to learn all of
the ensemble members.
|
void |
AdaBoost.setWeakLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner)
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
void |
MultiCategoryAdaBoost.setWeakLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> weakLearner)
Sets the weak learner that is passed the weighted training data on each
step of the algorithm.
|
Constructor and Description |
---|
AbstractBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner)
Creates a new instance of AbstractBaggingLearner.
|
AbstractBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>>,? extends MemberType> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of AbstractBaggingLearner.
|
AdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner)
Creates a new instance of AdaBoost.
|
AdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> weakLearner,
int maxIterations)
Creates a new instance of AdaBoost.
|
BaggingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new instance of BaggingCategorizerLearner.
|
BaggingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BaggingCategorizerLearner.
|
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner)
Creates a new instance of BaggingRegressionLearner.
|
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BaggingRegressionLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
MultiCategoryAdaBoost(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> weakLearner,
int maxIterations)
Creates a new
MultiCategoryAdaBoost with the given parameters. |
OnlineBaggingCategorizerLearner(IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> learner)
Creates a new
OnlineBaggingCategorizerLearner with the given
base learner and default parameters. |
OnlineBaggingCategorizerLearner(IncrementalLearner<? super InputOutputPair<? extends InputType,CategoryType>,MemberType> learner,
int ensembleSize,
double percentToSample,
java.util.Random random)
Creates a new
OnlineBaggingCategorizerLearner with the given
parameters. |
Modifier and Type | Field and Description |
---|---|
protected java.util.ArrayList<? extends InputOutputPair<? extends Vector,java.lang.Double>> |
FactorizationMachineAlternatingLeastSquares.dataList
The data in the form that it can be accessed in O(1) as a list.
|
protected java.util.ArrayList<? extends InputOutputPair<? extends Vector,java.lang.Double>> |
FactorizationMachineStochasticGradient.dataList
The input data represented as a list for fast access.
|
Modifier and Type | Method and Description |
---|---|
protected void |
FactorizationMachineStochasticGradient.update(InputOutputPair<? extends Vector,java.lang.Double> example)
Performs a single update of step of the stochastic gradient descent
by updating according to the given example.
|
Modifier and Type | Field and Description |
---|---|
protected InputOutputPair<InputType,OutputType> |
AbstractAnytimeFunctionMinimizer.result
Resulting minimum input-output pair
|
Modifier and Type | Method and Description |
---|---|
InputOutputPair<InputType,OutputType> |
AbstractAnytimeFunctionMinimizer.getResult()
Getter for result
|
InputOutputPair<InputType,OutputType> |
FunctionMinimizer.learn(EvaluatorType function)
Finds the (local) minimum of the given function
|
Modifier and Type | Method and Description |
---|---|
java.util.ArrayList<DefaultInputOutputPair<Vector,java.lang.Double>> |
FunctionMinimizerNelderMead.initializeSimplex(InputOutputPair<Vector,java.lang.Double> initialPoint,
double offsetValue)
Initializes the simplex about the initial point
|
protected void |
AbstractAnytimeFunctionMinimizer.setResult(InputOutputPair<InputType,OutputType> result)
Setter for result
|
Modifier and Type | Class and Description |
---|---|
class |
InputOutputSlopeTriplet
Stores an InputOutputPair with corresponding slope (gradient) information
|
Modifier and Type | Method and Description |
---|---|
InputOutputPair<Vector,Vector> |
DirectionalVectorToDifferentiableScalarFunction.getLastGradient()
Getter for lastGradient
|
Modifier and Type | Method and Description |
---|---|
boolean |
WolfeConditions.evaluateGoldsteinCondition(InputOutputPair<java.lang.Double,java.lang.Double> trialPoint)
Evaluates the Goldstein (Armijo) conditions, which is purely a
sufficient decrease condition.
|
static boolean |
WolfeConditions.evaluateGoldsteinCondition(InputOutputSlopeTriplet originalPoint,
InputOutputPair<java.lang.Double,java.lang.Double> trialPoint,
double slopeCondition)
Evaluates the Goldstein (Armijo) conditions, which is purely a
sufficient decrease condition.
|
void |
DirectionalVectorToDifferentiableScalarFunction.setLastGradient(InputOutputPair<Vector,Vector> lastGradient)
Setter for lastGradient
|
Modifier and Type | Method and Description |
---|---|
static double |
LineBracketInterpolatorGoldenSection.step(InputOutputPair<java.lang.Double,java.lang.Double> a,
InputOutputPair<java.lang.Double,java.lang.Double> b,
double tolerance)
Takes a Golden Section step between the two points
|
static double |
LineBracketInterpolatorGoldenSection.step(InputOutputPair<java.lang.Double,java.lang.Double> a,
InputOutputPair<java.lang.Double,java.lang.Double> b,
double tolerance)
Takes a Golden Section step between the two points
|
Modifier and Type | Method and Description |
---|---|
protected InputOutputPair<Vector,Vector> |
ConjugateGradientMatrixSolver.completeSolver() |
protected InputOutputPair<Vector,Vector> |
ConjugateGradientWithPreconditionerMatrixSolver.completeSolver() |
protected abstract InputOutputPair<Vector,Vector> |
IterativeMatrixSolver.completeSolver()
Called after the final iteration.
|
protected InputOutputPair<Vector,Vector> |
OverconstrainedConjugateGradientMatrixMinimizer.completeSolver() |
protected InputOutputPair<Vector,Vector> |
SteepestDescentMatrixSolver.completeSolver() |
InputOutputPair<Vector,Vector> |
IterativeMatrixSolver.getResult() |
InputOutputPair<Vector,Vector> |
IterativeMatrixSolver.learn(Operator function)
Shell that solves for Ax = b (x0 and rhs passed in on initialization, A
is contained in function).
|
Modifier and Type | Field and Description |
---|---|
protected java.util.LinkedList<InputOutputPair<? extends InputType,OutputType>> |
NearestNeighborExhaustive.data
The data that nearest-neighbor is performed over.
|
Modifier and Type | Method and Description |
---|---|
java.util.Collection<InputOutputPair<? extends InputType,OutputType>> |
KNearestNeighborExhaustive.getData() |
KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> |
KNearestNeighborKDTree.getData()
Getter for data
|
java.util.Collection<InputOutputPair<? extends InputType,OutputType>> |
NearestNeighbor.getData()
Gets the data from which this computes the nearest neighbors.
|
java.util.LinkedList<InputOutputPair<? extends InputType,OutputType>> |
NearestNeighborExhaustive.getData() |
KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> |
NearestNeighborKDTree.getData()
Getter for data
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractNearestNeighbor.add(InputOutputPair<? extends InputType,OutputType> value) |
void |
NearestNeighbor.add(InputOutputPair<? extends InputType,OutputType> value)
Adds the Pair to the data.
|
Modifier and Type | Method and Description |
---|---|
KNearestNeighborExhaustive<InputType,OutputType> |
KNearestNeighborExhaustive.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new KNearestNeighborExhaustive from a Collection of InputType.
|
KNearestNeighborKDTree<InputType,OutputType> |
KNearestNeighborKDTree.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new KNearestNeighbor from a Collection of InputType.
|
NearestNeighborExhaustive<InputType,OutputType> |
NearestNeighborExhaustive.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data) |
NearestNeighborKDTree<InputType,OutputType> |
NearestNeighborKDTree.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new NearestNeighbor from a Collection of InputType.
|
void |
KNearestNeighborExhaustive.setData(java.util.Collection<InputOutputPair<? extends InputType,OutputType>> data)
Setter for data
|
void |
KNearestNeighborKDTree.setData(KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data)
Setter for data
|
void |
NearestNeighborKDTree.setData(KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data)
Setter for data
|
void |
NearestNeighborExhaustive.setData(java.util.LinkedList<InputOutputPair<? extends InputType,OutputType>> data)
Sets the data that the object performs nearest-neighbor lookup on.
|
Constructor and Description |
---|
KNearestNeighborExhaustive(int k,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborExhaustive
|
KNearestNeighborKDTree(int k,
KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
Metric<? super InputType> distanceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborKDTree
|
NearestNeighborExhaustive(DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new instance of
NearestNeighborExhaustive . |
NearestNeighborKDTree(KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of NearestNeighborKDTree
|
Modifier and Type | Method and Description |
---|---|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
InputOutputPair<? extends Vectorizable,java.lang.Boolean> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
OnlineMultiPerceptron.update(LinearMultiCategorizer<CategoryType> target,
InputOutputPair<? extends Vectorizable,CategoryType> example) |
void |
OnlineMultiPerceptron.UniformUpdate.update(LinearMultiCategorizer<CategoryType> target,
InputOutputPair<? extends Vectorizable,CategoryType> example) |
void |
OnlineMultiPerceptron.ProportionalUpdate.update(LinearMultiCategorizer<CategoryType> target,
InputOutputPair<? extends Vectorizable,CategoryType> example) |
Modifier and Type | Method and Description |
---|---|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Run this algorithm on a batch of data using the given kernel function.
|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,java.lang.Boolean>> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
Modifier and Type | Method and Description |
---|---|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Boolean>,DefaultWeightedValue<InputType>> |
KernelAdatron.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,DefaultWeightedValue<InputType>> |
KernelPerceptron.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
void |
KernelBinaryCategorizerOnlineLearnerAdapter.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data) |
Modifier and Type | Method and Description |
---|---|
protected void |
KernelPerceptron.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
protected void |
KernelAdatron.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Boolean>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Double>,DefaultWeightedValue<InputType>> |
KernelBasedIterativeRegression.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
LinearFunction |
UnivariateLinearRegression.learn(java.util.Collection<? extends InputOutputPair<? extends java.lang.Double,java.lang.Double>> data) |
VectorFunctionLinearDiscriminant<InputType> |
LinearBasisRegression.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data)
Computes the linear regression for the given Collection of
InputOutputPairs.
|
LocallyWeightedFunction<InputType,OutputType> |
LocallyWeightedFunction.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data) |
LinearDiscriminantWithBias |
LinearRegression.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data)
Computes the linear regression for the given Collection of
InputOutputPairs.
|
ResultType |
AbstractMinimizerBasedParameterCostMinimizer.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> data) |
MultivariateDiscriminantWithBias |
MultivariateLinearRegression.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> data) |
protected void |
KernelBasedIterativeRegression.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Double>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
Constructor and Description |
---|
LocallyWeightedFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> rawData,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Evaluator that implements the concept of LocallyWeightedLearning.
|
Modifier and Type | Method and Description |
---|---|
InputOutputPair<java.lang.Double,java.lang.Double> |
AbstractBracketedRootFinder.getResult() |
InputOutputPair<java.lang.Double,java.lang.Double> |
MinimizerBasedRootFinder.getResult() |
InputOutputPair<java.lang.Double,java.lang.Double> |
RootFinderSecantMethod.getResult() |
InputOutputPair<java.lang.Double,java.lang.Double> |
MinimizerBasedRootFinder.learn(Evaluator<java.lang.Double,java.lang.Double> data) |
Modifier and Type | Field and Description |
---|---|
protected InputOutputPair<? extends InputType,? extends java.lang.Boolean> |
SuccessiveOverrelaxation.Entry.example
The example the data pertains to.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.ArrayList<? extends InputOutputPair<? extends Vectorizable,java.lang.Boolean>> |
PrimalEstimatedSubGradient.dataList
The data represented as a list.
|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,SuccessiveOverrelaxation.Entry> |
SuccessiveOverrelaxation.supportsMap
The mapping of weight objects to non-zero weighted examples
(support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,SuccessiveOverrelaxation.Entry> |
SuccessiveOverrelaxation.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected void |
SuccessiveOverrelaxation.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,SuccessiveOverrelaxation.Entry> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
Constructor and Description |
---|
Entry(InputOutputPair<? extends InputType,? extends java.lang.Boolean> example)
Creates a new
Entry for the given example. |
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> |
RegressionTreeLearner.regressionLearner
The learning algorithm for the regression function.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> |
RegressionTreeLearner.getRegressionLearner()
Gets the regression learner that is to be used to fit a function
approximator to the values in the tree.
|
<DecisionType> |
AbstractDecisionTreeLearner.splitData(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
Categorizer<? super InputType,? extends DecisionType> decider)
Splits the data into new lists based on the given decision function.
|
Modifier and Type | Method and Description |
---|---|
boolean |
AbstractDecisionTreeLearner.areAllOutputsEqual(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Determines if all of the output values in the collection are equal.
|
DefaultPair<java.lang.Double,java.lang.Double> |
AbstractVectorThresholdMaximumGainLearner.computeBestGainAndThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data,
int dimension,
DefaultDataDistribution<OutputType> baseCounts)
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
|
protected DefaultPair<java.lang.Double,java.lang.Double> |
AbstractVectorThresholdMaximumGainLearner.computeBestGainAndThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data,
int dimension,
DefaultDataDistribution<OutputType> baseCounts,
java.util.ArrayList<DefaultWeightedValue<OutputType>> values)
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
|
DefaultPair<java.lang.Double,java.lang.Double> |
VectorThresholdVarianceLearner.computeBestGainThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data,
int dimension,
double baseVariance)
Computes the best information gain-threshold pair for the given
dimension on the given data.
|
static <OutputType> |
CategorizationTreeLearner.getOutputCounts(java.util.Collection<? extends InputOutputPair<?,OutputType>> data)
Creates a histogram of values based on the output values in the given
collection of pairs.
|
RegressionTree<InputType> |
RegressionTreeLearner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data) |
CategorizationTree<InputType,OutputType> |
CategorizationTreeLearner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data) |
VectorElementThresholdCategorizer |
VectorThresholdVarianceLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data)
Learns a VectorElementThresholdCategorizer from the given data by
picking the vector element and threshold that best maximizes information
gain.
|
VectorElementThresholdCategorizer |
AbstractVectorThresholdMaximumGainLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data) |
VectorElementThresholdCategorizer |
RandomSubVectorThresholdLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data) |
protected <DecisionType> |
AbstractDecisionTreeLearner.learnChildNodes(AbstractDecisionTreeNode<InputType,OutputType,DecisionType> node,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
Categorizer<? super InputType,? extends DecisionType> decider)
Learns the child nodes for a node using the given data at the node
plus the decision function for the node.
|
protected RegressionTreeNode<InputType,?> |
RegressionTreeLearner.learnNode(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data,
AbstractDecisionTreeNode<InputType,java.lang.Double,?> parent)
Recursively learns the regression tree using the given collection
of data, returning the created node.
|
protected abstract AbstractDecisionTreeNode<InputType,OutputType,?> |
AbstractDecisionTreeLearner.learnNode(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
AbstractDecisionTreeNode<InputType,OutputType,?> parent)
Recursively learns the decision tree using the given collection
of data, returning the created node.
|
protected CategorizationTreeNode<InputType,OutputType,?> |
CategorizationTreeLearner.learnNode(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
AbstractDecisionTreeNode<InputType,OutputType,?> parent)
Recursively learns the categorization tree using the given collection
of data, returning the created node.
|
void |
RegressionTreeLearner.setRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner)
Sets the regression learner that is to be used to fit a function
approximator to the values in the tree.
|
<DecisionType> |
AbstractDecisionTreeLearner.splitData(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
Categorizer<? super InputType,? extends DecisionType> decider)
Splits the data into new lists based on the given decision function.
|
Constructor and Description |
---|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner)
Creates a new instance of CategorizationTreeLearner.
|
RegressionTreeLearner(DeciderLearner<? super InputType,java.lang.Double,?,?> deciderLearner,
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,java.lang.Double>> regressionLearner,
int leafCountThreshold,
int maxDepth)
Creates a new instance of CategorizationTreeLearner.
|
Modifier and Type | Interface and Description |
---|---|
interface |
WeightedInputOutputPair<InputType,OutputType>
The
WeightedInputOutputPair class implements an additional
weighting term on an InputOutputPair , typically used to inform
learning algorithms of the relative weight between examples. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractInputOutputPair<InputType,OutputType>
An abstract implementation of the
InputOutputPair interface. |
class |
DefaultInputOutputPair<InputType,OutputType>
A default implementation of the
InputOutputPair interface. |
class |
DefaultWeightedInputOutputPair<InputType,OutputType>
A default implementation of the
WeightedInputOutputPair interface. |
Modifier and Type | Method and Description |
---|---|
static java.util.ArrayList<java.util.ArrayList<InputOutputPair<java.lang.Double,java.lang.Double>>> |
DatasetUtil.decoupleVectorPairDataset(java.util.Collection<? extends InputOutputPair<? extends Vector,? extends Vector>> dataset)
Takes a set of equal-dimension Vector-Vector InputOutputPairs and
turns them into a collection of Double-Double InputOutputPairs.
|
Modifier and Type | Method and Description |
---|---|
static double |
DatasetUtil.getWeight(InputOutputPair<?,?> pair)
Gets the weight of a given input-output pair.
|
Modifier and Type | Method and Description |
---|---|
static void |
DatasetUtil.assertInputDimensionalitiesAllEqual(java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,?>> data)
Asserts that all of the dimensionalities of the input vectors in the
given set of input-output pairs are the same.
|
static void |
DatasetUtil.assertInputDimensionalitiesAllEqual(java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,?>> data,
int dimensionality)
Asserts that all of the dimensionalities of the input vectors in the
given set of input-output pairs equal the given dimensionality.
|
static double |
DatasetUtil.computeOutputMean(java.util.Collection<? extends InputOutputPair<?,? extends java.lang.Number>> data)
Computes the mean of the output data.
|
static double |
DatasetUtil.computeOutputVariance(java.util.Collection<? extends InputOutputPair<?,? extends java.lang.Number>> data)
Computes the variance of the output of a given set of input-output pairs.
|
static double |
DatasetUtil.computeWeightedOutputMean(java.util.Collection<? extends InputOutputPair<?,? extends java.lang.Number>> data)
Computes the mean of the output data.
|
static <OutputType> |
DatasetUtil.countOutputValues(java.lang.Iterable<? extends InputOutputPair<?,? extends OutputType>> data)
Creates a data histogram over the output values from the given data.
|
static java.util.ArrayList<java.util.ArrayList<InputOutputPair<java.lang.Double,java.lang.Double>>> |
DatasetUtil.decoupleVectorPairDataset(java.util.Collection<? extends InputOutputPair<? extends Vector,? extends Vector>> dataset)
Takes a set of equal-dimension Vector-Vector InputOutputPairs and
turns them into a collection of Double-Double InputOutputPairs.
|
static <OutputType> |
DatasetUtil.findUniqueOutputs(java.lang.Iterable<? extends InputOutputPair<?,? extends OutputType>> data)
Creates a set containing the unique output values from the given data.
|
static int |
DatasetUtil.getInputDimensionality(java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,?>> data)
Gets the dimensionality of the input vectors in given set of input-output
pairs.
|
static <InputType> |
DatasetUtil.inputsList(java.lang.Iterable<? extends InputOutputPair<? extends InputType,?>> data)
Creates a list containing all of the input values from the given data.
|
static <OutputType> |
DatasetUtil.outputsList(java.lang.Iterable<? extends InputOutputPair<?,? extends OutputType>> data)
Creates a list containing all of the output values from the given data.
|
static <DataType> DefaultPair<java.util.LinkedList<DataType>,java.util.LinkedList<DataType>> |
DatasetUtil.splitDatasets(java.util.Collection<? extends InputOutputPair<? extends DataType,java.lang.Boolean>> data)
Splits a dataset of input-output pair into two datasets, one for the
inputs that have a "true" output and another for the inputs that have
a "false" output
|
static <InputType,CategoryType> |
DatasetUtil.splitOnOutput(java.lang.Iterable<? extends InputOutputPair<? extends InputType,? extends CategoryType>> data)
Splits a dataset according to its output value (usually a category) so
that all the inputs for that category are given in a list.
|
static double |
DatasetUtil.sumWeights(java.util.Collection<? extends InputOutputPair<?,?>> data)
Gets the sum of the weights of the weights of the elements of the
dataset.
|
Modifier and Type | Method and Description |
---|---|
BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> |
EvaluatorToCategorizerAdapter.Learner.getLearner()
Gets the learner whose output is to be adapted to be a categorizer.
|
Modifier and Type | Method and Description |
---|---|
BinaryVersusCategorizer<InputType,CategoryType> |
BinaryVersusCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>> data) |
EvaluatorToCategorizerAdapter<InputType,CategoryType> |
EvaluatorToCategorizerAdapter.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>> data) |
WinnerTakeAllCategorizer<InputType,CategoryType> |
WinnerTakeAllCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>> data) |
MaximumAPosterioriCategorizer<ObservationType,CategoryType> |
MaximumAPosterioriCategorizer.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends ObservationType,CategoryType>> data) |
FisherLinearDiscriminantBinaryCategorizer |
FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,java.lang.Boolean>> data) |
static FisherLinearDiscriminantBinaryCategorizer |
FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver.learn(java.util.Collection<? extends InputOutputPair<? extends Vector,java.lang.Boolean>> data,
double defaultCovariance)
Closed-form learning algorithm for a Fisher Linear Discriminant.
|
void |
EvaluatorToCategorizerAdapter.Learner.setLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Sets the learner whose output is to be adapted to be a categorizer.
|
Constructor and Description |
---|
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,java.lang.Boolean>> learner)
Creates a new
BinaryVersusCategorizer.Learner with an
binary categorizer learner to learn category versus category. |
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new
EvaluatorToCategorizerAdapter . |
Learner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,Evaluator<? super InputType,? extends Vectorizable>> learner)
Creates a new learner adapter with the given internal learner.
|
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends InputOutputPair<? extends InputType,TargetType>> |
AbstractSupervisedCostFunction.getCostParameters() |
Modifier and Type | Method and Description |
---|---|
static SumSquaredErrorCostFunction.Cache |
SumSquaredErrorCostFunction.Cache.compute(GradientDescendable objectToOptimize,
java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> data)
Computes often-used parameters of a sum-squared error term
|
void |
AbstractSupervisedCostFunction.setCostParameters(java.util.Collection<? extends InputOutputPair<? extends InputType,TargetType>> costParameters) |
void |
ParallelizedCostFunctionContainer.setCostParameters(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> costParameters) |
Constructor and Description |
---|
AbstractParallelizableCostFunction(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> costParameters)
Creates a new instance of AbstractParallelizableCostFunction
|
AbstractSupervisedCostFunction(java.util.Collection<? extends InputOutputPair<? extends InputType,TargetType>> costParameters)
Creates a new instance of AbstractSupervisedCostFunction
|
MeanL1CostFunction(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> dataset)
Creates a new instance of MeanL1CostFunction
|
MeanSquaredErrorCostFunction(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> dataset)
Creates a new instance of MeanSquaredErrorCostFunction
|
SumSquaredErrorCostFunction(java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>> dataset)
Creates a new instance of MeanSquaredErrorCostFunction
|
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,? extends Evaluator<? super InputType,? extends Vectorizable>> |
VectorFunctionToScalarFunction.Learner.vectorLearner
The supervised learner that learns on vectors as outputs.
|
Modifier and Type | Method and Description |
---|---|
static PolynomialFunction.Linear |
PolynomialFunction.Linear.fit(InputOutputPair<java.lang.Double,java.lang.Double> p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1)
Fits a linear (straight-line) curve to the given data points
|
static PolynomialFunction.Linear |
PolynomialFunction.Linear.fit(InputOutputPair<java.lang.Double,java.lang.Double> p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1)
Fits a linear (straight-line) curve to the given data points
|
static PolynomialFunction.Quadratic |
PolynomialFunction.Quadratic.fit(InputOutputPair<java.lang.Double,java.lang.Double> p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1,
InputOutputPair<java.lang.Double,java.lang.Double> p2)
Fits a quadratic to three points
|
static PolynomialFunction.Quadratic |
PolynomialFunction.Quadratic.fit(InputOutputPair<java.lang.Double,java.lang.Double> p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1,
InputOutputPair<java.lang.Double,java.lang.Double> p2)
Fits a quadratic to three points
|
static PolynomialFunction.Quadratic |
PolynomialFunction.Quadratic.fit(InputOutputPair<java.lang.Double,java.lang.Double> p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1,
InputOutputPair<java.lang.Double,java.lang.Double> p2)
Fits a quadratic to three points
|
static PolynomialFunction.Quadratic |
PolynomialFunction.Quadratic.fit(InputOutputSlopeTriplet p0,
InputOutputPair<java.lang.Double,java.lang.Double> p1)
Fits a quadratic to two points, one of which has slope information.
|
Modifier and Type | Method and Description |
---|---|
VectorFunctionLinearDiscriminant<java.lang.Double> |
PolynomialFunction.Regression.learn(java.util.Collection<? extends InputOutputPair<? extends java.lang.Double,java.lang.Double>> data) |
VectorFunctionToScalarFunction<InputType> |
VectorFunctionToScalarFunction.Learner.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data) |
static VectorFunctionLinearDiscriminant<java.lang.Double> |
PolynomialFunction.Regression.learn(int maxOrder,
java.util.Collection<? extends InputOutputPair<java.lang.Double,java.lang.Double>> data)
Performs LinearRegression using all integer-exponent polynomials
less than or equal to the maxOrder
|
Constructor and Description |
---|
Learner(BatchLearner<java.util.Collection<? extends InputOutputPair<? extends InputType,Vector>>,? extends Evaluator<? super InputType,? extends Vectorizable>> vectorLearner)
Creates a new
VectorFunctionToScalarFunction.Learner . |
Modifier and Type | Method and Description |
---|---|
ResultType |
AbstractSupervisedPerformanceEvaluator.evaluatePerformance(Evaluator<? super InputType,? extends EstimateType> evaluator,
java.util.Collection<? extends InputOutputPair<? extends InputType,TargetType>> data)
Evaluates the performance accuracy of the given estimates against the
given targets.
|
Modifier and Type | Method and Description |
---|---|
static <DataType extends java.lang.Number> |
ProbabilityMassFunctionUtil.inverse(CumulativeDistributionFunction<DataType> cdf,
double p)
Inverts the discrete CDF, that is p=Pr{x<=X}.
|
Modifier and Type | Class and Description |
---|---|
static class |
AdaptiveRejectionSampling.Point
An InputOutputPair that has a natural ordering according to their
input (x-axis) values.
|
Modifier and Type | Method and Description |
---|---|
void |
BayesianLinearRegression.IncrementalEstimator.update(BayesianLinearRegression.IncrementalEstimator.SufficientStatistic target,
InputOutputPair<? extends Vectorizable,java.lang.Double> data) |
void |
BayesianRobustLinearRegression.IncrementalEstimator.update(BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic target,
InputOutputPair<? extends Vectorizable,java.lang.Double> data) |
void |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic.update(InputOutputPair<? extends Vectorizable,java.lang.Double> value) |
void |
BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic.update(InputOutputPair<? extends Vectorizable,java.lang.Double> value) |
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
GaussianProcessRegression.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data) |
MultivariateGaussian.PDF |
BayesianLinearRegression.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
MultivariateGaussian.PDF |
BayesianLinearRegression.IncrementalEstimator.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
MultivariateGaussianInverseGammaDistribution |
BayesianRobustLinearRegression.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
MultivariateGaussianInverseGammaDistribution |
BayesianRobustLinearRegression.IncrementalEstimator.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
void |
BayesianLinearRegression.IncrementalEstimator.update(BayesianLinearRegression.IncrementalEstimator.SufficientStatistic target,
java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
void |
BayesianRobustLinearRegression.IncrementalEstimator.update(BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic target,
java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data) |
Modifier and Type | Method and Description |
---|---|
protected static InputOutputPair<java.lang.Double,java.lang.Double> |
InverseTransformSampling.initializeNewtonsMethod(SmoothCumulativeDistributionFunction cdf,
double p,
double tolerance)
Initializes Newton's method for inverse transform sampling.
|
static <NumberType extends java.lang.Number> |
InverseTransformSampling.inverse(CumulativeDistributionFunction<NumberType> cdf,
double p)
Inverts the given CDF, finding the value of "x" so that CDF(x)=p using
a root-finding algorithm.
|
static InputOutputPair<java.lang.Double,java.lang.Double> |
InverseTransformSampling.inverseNewtonsMethod(SmoothUnivariateDistribution distribution,
double p,
double tolerance)
Inverts the given CDF, finding the value of "x" so that CDF(x)=p using
a root-finding algorithm.
|
static InputOutputPair<java.lang.Double,java.lang.Double> |
InverseTransformSampling.inverseRootFinder(RootFinder rootFinder,
CumulativeDistributionFunction<java.lang.Double> cdf,
double p)
Inverts the given CDF, finding the value of "x" so that CDF(x)=p using
a root-finding algorithm.
|
Modifier and Type | Method and Description |
---|---|
static ReceiverOperatingCharacteristic |
ReceiverOperatingCharacteristic.create(java.util.Collection<? extends InputOutputPair<java.lang.Double,java.lang.Boolean>> data)
Creates an ROC curve based on the scored data with target information
|
MannWhitneyUConfidence.Statistic |
MannWhitneyUConfidence.evaluateNullHypothesis(java.util.Collection<? extends InputOutputPair<? extends java.lang.Number,java.lang.Boolean>> scoreClassPairs)
Performs a U-test on the score-class pairs.
|