Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.baseline |
Provides baseline (dummy) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.confidence |
Provides confidence-weighted categorization algorithms.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
Modifier and Type | Interface and Description |
---|---|
interface |
SupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
Interface for a class that is a supervised learning algorithm that can be
used both batch and incremental contexts.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeSupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The
AbstractAnytimeSupervisedBatchLearner abstract class extends
the AbstractAnytimeBatchLearner to implement the
SupervisedBatchLearner interface. |
class |
AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
An abstract implementation of the batch and incremental learning for
an incremental supervised learner.
|
class |
InputOutputTransformedBatchLearner<InputType,TransformedInputType,TransformedOutputType,OutputType>
An adapter class for performing supervised learning from data where both
the input and output have to be transformed before they are passed to the
learning algorithm.
|
class |
TimeSeriesPredictionLearner<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A learner used to predict the future of a sequence of data by wrapping
another learner and created a future-aligned data set.
|
Modifier and Type | Method and Description |
---|---|
SupervisedBatchLearner<InputType,OutputType,EvaluatorType> |
TimeSeriesPredictionLearner.getSupervisedLearner()
Getter for supervisedLearner
|
Modifier and Type | Method and Description |
---|---|
void |
TimeSeriesPredictionLearner.setSupervisedLearner(SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
Setter for supervisedLearner
|
Constructor and Description |
---|
TimeSeriesPredictionLearner(int predictionHorizon,
SupervisedBatchLearner<InputType,OutputType,EvaluatorType> supervisedLearner)
Creates a new instance of TimeSeriesPredictionLearner
|
Modifier and Type | Class and Description |
---|---|
class |
MeanLearner
The
MeanLearner class implements a baseline learner that computes
the mean of a given set of values. |
class |
MostFrequentLearner<OutputType>
The
MostFrequentLearner class implements a baseline learner that
computes the most frequent output value. |
class |
WeightedMeanLearner
The
WeightedMeanLearner class implements a baseline learner that
computes the weighted mean output value. |
class |
WeightedMostFrequentLearner<OutputType>
The
WeightedMostFrequentLearner class implements a baseline learning
algorithm that finds the most frequent output of a given dataset based on
the weights of the examples. |
Modifier and Type | Class and Description |
---|---|
static class |
DiscreteNaiveBayesCategorizer.Learner<InputType,CategoryType>
Learner for a DiscreteNaiveBayesCategorizer.
|
static class |
VectorNaiveBayesCategorizer.BatchGaussianLearner<CategoryType>
A supervised batch distributionLearner for a vector Naive Bayes categorizer that fits
a Gaussian.
|
static class |
VectorNaiveBayesCategorizer.Learner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
A supervised batch distributionLearner for a vector Naive Bayes categorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveRegularizationOfWeights
An implementation of the Adaptive Regularization of Weights (AROW) algorithm
for online learning of a linear binary categorizer.
|
class |
ConfidenceWeightedDiagonalDeviation
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalDeviationProject
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalVariance
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
class |
ConfidenceWeightedDiagonalVarianceProject
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
static class |
AbstractDeltaCategorizer.AbstractLearner<CategoryType>
Abstract learner for delta algorithms.
|
static class |
BurrowsDeltaCategorizer.Learner<CategoryType>
Learner for a BurrowsDeltaCategorizer.
|
static class |
CosineDeltaCategorizer.Learner<CategoryType>
Learner for a CosineDeltaCategorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaggingLearner<InputType,OutputType,MemberType,EnsembleType extends Evaluator<? super InputType,? extends OutputType>>
Learns an ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
AdaBoost<InputType>
The
AdaBoost class implements the Adaptive Boosting (AdaBoost)
algorithm formulated by Yoav Freund and Robert Shapire. |
class |
BaggingCategorizerLearner<InputType,CategoryType>
Learns an categorization ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BaggingRegressionLearner<InputType>
Learns an ensemble for regression by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BinaryBaggingLearner<InputType>
The
BinaryBaggingLearner implements the Bagging learning algorithm. |
class |
BinaryCategorizerSelector<InputType>
The
BinaryCategorizerSelector class implements a "weak learner"
meant for use in boosting algorithms that selects the best
BinaryCategorizer from a pre-set list by picking the one with the
best weighted error. |
class |
CategoryBalancedBaggingLearner<InputType,CategoryType>
An extension of the basic bagging learner that attempts to sample bags that
have equal numbers of examples from every category.
|
class |
CategoryBalancedIVotingLearner<InputType,CategoryType>
An extension of IVoting for dealing with skew problems that makes sure that
there are an equal number of examples from each category in each sample that
an ensemble member is trained on.
|
class |
IVotingCategorizerLearner<InputType,CategoryType>
Learns an ensemble in a method similar to bagging except that on each
iteration the bag is built from two parts, each sampled from elements from
disjoint sets.
|
class |
MultiCategoryAdaBoost<InputType,CategoryType>
An implementation of a multi-class version of the Adaptive Boosting
(AdaBoost) algorithm, known as AdaBoost.M1.
|
class |
OnlineBaggingCategorizerLearner<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An implementation of an online version of the Bagging algorithm for learning
an ensemble of categorizers.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractFactorizationMachineLearner
An abstract class for learning
FactorizationMachine s. |
class |
FactorizationMachineAlternatingLeastSquares
Implements an Alternating Least Squares (ALS) algorithm for learning a
Factorization Machine.
|
class |
FactorizationMachineStochasticGradient
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
Factorization Machine.
|
Modifier and Type | Class and Description |
---|---|
static class |
KNearestNeighborExhaustive.Learner<InputType,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighborExhaustive
from a given dataset, simply a pass-through to the constructor of
KNearestNeighborExhaustive
|
static class |
KNearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new KNearestNeighbor
from a given dataset, simply a pass-through to the constructor of
KNearestNeighbor
|
static class |
NearestNeighborExhaustive.Learner<InputType,OutputType>
The
NearestNeighborExhaustive.Learner class implements a batch learner for
the NearestNeighborExhaustive class. |
static class |
NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>
This is a BatchLearner interface for creating a new NearestNeighbor
from a given dataset, simply a pass-through to the constructor of
NearestNeighbor
|
Modifier and Type | Interface and Description |
---|---|
interface |
KernelizableBinaryCategorizerOnlineLearner
Interface for an online learner of a linear binary categorizer that can also
be used with a kernel function.
|
interface |
LinearizableBinaryCategorizerOnlineLearner<InputType>
Interface for an online learner of a kernel binary categorizer that can also
be used for learning a linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKernelizableBinaryCategorizerOnlineLearner
An abstract implementation of the
KernelizableBinaryCategorizerOnlineLearner
interface. |
class |
AbstractLinearCombinationOnlineLearner
An abstract class for online learning of linear binary categorizers that
take the form of a weighted sum of inputs.
|
class |
AbstractOnlineLinearBinaryCategorizerLearner
An abstract class for online (incremental) learning algorithms that produce
an
LinearBinaryCategorizer . |
class |
AggressiveRelaxedOnlineMaximumMarginAlgorithm
An implementation of the Aggressive Relaxed Online Maximum Margin Algorithm
(AROMMA).
|
class |
Ballseptron
An implementation of the Ballseptron algorithm.
|
class |
BatchMultiPerceptron<CategoryType>
Implements a multi-class version of the standard batch Perceptron learning
algorithm.
|
class |
OnlineBinaryMarginInfusedRelaxedAlgorithm
An implementation of the binary MIRA algorithm.
|
class |
OnlinePassiveAggressivePerceptron
An implementation of the Passive-Aggressive algorithm for learning a linear
binary categorizer.
|
static class |
OnlinePassiveAggressivePerceptron.AbstractSoftMargin
An abstract class for soft-margin versions of the Passive-Aggressive
algorithm.
|
static class |
OnlinePassiveAggressivePerceptron.LinearSoftMargin
An implementation of the linear soft-margin variant of the Passive-
Aggressive algorithm (PA-I).
|
static class |
OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
An implementation of the quadratic soft-margin variant of the Passive-
Aggressive algorithm (PA-II).
|
class |
OnlinePerceptron
An online version of the classic Perceptron algorithm.
|
class |
OnlineRampPassiveAggressivePerceptron
An implementation of the Ramp Loss Passive Aggressive Perceptron (PA^R) from
the referenced paper.
|
class |
OnlineShiftingPerceptron
An implementation of the Shifting Perceptron algorithm.
|
class |
OnlineVotedPerceptron
An online version of the Voted-Perceptron algorithm.
|
class |
Perceptron
The
Perceptron class implements the standard Perceptron learning
algorithm that learns a binary classifier based on vector input. |
class |
RelaxedOnlineMaximumMarginAlgorithm
An implementation of the Relaxed Online Maximum Margin Algorithm
(ROMMA).
|
class |
Winnow
An implementation of the Winnow incremental learning algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOnlineBudgetedKernelBinaryCategorizerLearner<InputType>
An abstract implementation of the
BudgetedKernelBinaryCategorizerLearner
for online learners. |
class |
AbstractOnlineKernelBinaryCategorizerLearner<InputType>
An abstract class for an online kernel binary categorizer learner.
|
class |
Forgetron<InputType>
An implementation of the "self-tuned" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Basic<InputType>
An implementation of the "basic" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Greedy<InputType>
An implementation of the "greedy" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
class |
KernelAdatron<InputType>
The
KernelAdatron class implements an online version of the Support
Vector Machine learning algorithm. |
class |
KernelBinaryCategorizerOnlineLearnerAdapter<InputType>
A wrapper class for a
KernelizableBinaryCategorizerOnlineLearner
that allows it to be used as a batch or incremental learner over the
input type directly, rather than using utility methods. |
class |
KernelPerceptron<InputType>
The
KernelPerceptron class implements the kernel version of
the Perceptron algorithm. |
class |
OnlineKernelPerceptron<InputType>
An implementation of the online version of the Perceptron algorithm.
|
class |
OnlineKernelRandomizedBudgetPerceptron<InputType>
An implementation of a fixed-memory kernel Perceptron algorithm.
|
class |
Projectron<InputType>
An implementation of the Projectron algorithm, which is an online kernel
binary categorizer learner that has a budget parameter tuned by the eta
parameter.
|
static class |
Projectron.LinearSoftMargin<InputType>
An implementation of the Projectron++ algorithm, which is an online
kernel binary categorizer learner that has a budget parameter tuned by
the eta parameter.
|
class |
RemoveOldestKernelPerceptron<InputType>
A budget kernel Perceptron that always removes the oldest item.
|
class |
Stoptron<InputType>
An online, budgeted, kernel version of the Perceptron algorithm that stops
learning once it has reached its budget.
|
Modifier and Type | Interface and Description |
---|---|
interface |
MultivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends Vectorizable>>
A regression algorithm that maps one or more independent (input) variables
onto multiple output variables.
|
interface |
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
|
interface |
Regression<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A supervised learning algorithm that attempts to interpolate/extrapolate
inputs given a training set of input/output pairs.
|
interface |
UnivariateRegression<InputType,EvaluatorType extends Evaluator<? super InputType,? extends java.lang.Double>>
A type of Regression algorithm that has a single dependent (output) variable
that we are trying to predict.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLogisticRegression<InputType,OutputType,FunctionType extends Evaluator<? super InputType,OutputType>>
Abstract partial implementation for logistic regression classes.
|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
class |
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
|
class |
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure.
|
class |
KernelBasedIterativeRegression<InputType>
The
KernelBasedIterativeRegression class implements an online version of
the Support Vector Regression algorithm. |
class |
KernelWeightedRobustRegression<InputType,OutputType>
KernelWeightedRobustRegression takes a supervised learning algorithm that
operates on a weighted collection of InputOutputPairs and modifies the
weight of a sample based on the dataset output and its corresponding
estimate from the Evaluator from the supervised learning algorithm at each
iteration.
|
class |
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators.
|
class |
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
Levenberg-Marquardt Estimation (or LMA).
|
class |
LinearBasisRegression<InputType>
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
class |
LinearRegression
Computes the least-squares regression for a LinearCombinationFunction
given a dataset.
|
static class |
LocallyWeightedFunction.Learner<InputType,OutputType>
Learning algorithm for creating LocallyWeightedFunctions.
|
class |
LogisticRegression
Performs Logistic Regression by means of the iterative reweighted least
squares (IRLS) algorithm, where the logistic function has an explicit bias
term, and a diagonal L2 regularization term.
|
class |
MultivariateLinearRegression
Performs multivariate regression with an explicit bias term, with optional
L2 regularization.
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|
class |
UnivariateLinearRegression
An implementation of simple univariate linear regression.
|
Modifier and Type | Method and Description |
---|---|
SupervisedBatchLearner<InputType,OutputType,?> |
KernelWeightedRobustRegression.getIterationLearner()
Getter for iterationLearner
|
SupervisedBatchLearner<InputType,OutputType,?> |
LocallyWeightedFunction.getLearner()
Getter for learner
|
SupervisedBatchLearner<InputType,OutputType,?> |
LocallyWeightedFunction.Learner.getLearner()
Getter for learner
|
Modifier and Type | Method and Description |
---|---|
void |
KernelWeightedRobustRegression.setIterationLearner(SupervisedBatchLearner<InputType,OutputType,?> iterationLearner) |
void |
LocallyWeightedFunction.setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
Setter for learner
|
void |
LocallyWeightedFunction.Learner.setLearner(SupervisedBatchLearner<InputType,OutputType,?> learner)
Setter for learner
|
Constructor and Description |
---|
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType,OutputType,?> iterationLearner,
Kernel<? super OutputType> kernelWeightingFunction)
Creates a new instance of RobustRegression
|
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType,OutputType,?> iterationLearner,
Kernel<? super OutputType> kernelWeightingFunction,
int maxIterations,
double tolerance)
Creates a new instance of RobustRegression
|
Learner(Kernel<? super InputType> kernel,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Creates a new instance of LocallyWeightedFunction
|
LocallyWeightedFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> rawData,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Evaluator that implements the concept of LocallyWeightedLearning.
|
Modifier and Type | Class and Description |
---|---|
class |
PrimalEstimatedSubGradient
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
algorithm for learning a linear support vector machine (SVM).
|
class |
SequentialMinimalOptimization<InputType>
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
training a Support Vector Machine (SVM), which is a kernel-based binary
categorizer.
|
class |
SuccessiveOverrelaxation<InputType>
The
SuccessiveOverrelaxation class implements the Successive
Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM). |
Modifier and Type | Class and Description |
---|---|
class |
CategorizationTreeLearner<InputType,OutputType>
The
CategorizationTreeLearner class implements a supervised learning
algorithm for learning a categorization tree. |
class |
RegressionTreeLearner<InputType>
The
RegressionTreeLearner class implements a learning algorithm for
a regression tree that makes use of a decider learner and a regression
learner. |
Modifier and Type | Class and Description |
---|---|
static class |
BinaryVersusCategorizer.Learner<InputType,CategoryType>
A learner for the
BinaryVersusCategorizer . |
static class |
EvaluatorToCategorizerAdapter.Learner<InputType,CategoryType>
The
EvaluatorToCategorizerAdapter.Learner class implements a
simple supervised learner for a EvaluatorToCategorizerAdapter . |
static class |
FisherLinearDiscriminantBinaryCategorizer.ClosedFormSolver
This class implements a closed form solver for the Fisher linear
discriminant binary categorizer.
|
static class |
MaximumAPosterioriCategorizer.Learner<ObservationType,CategoryType>
Learner for the MAP categorizer
|
static class |
WinnerTakeAllCategorizer.Learner<InputType,CategoryType>
A learner for the adapter.
|
Modifier and Type | Class and Description |
---|---|
static class |
PolynomialFunction.Regression
Performs Linear Regression using an arbitrary set of
PolynomialFunction basis functions
|
static class |
VectorFunctionToScalarFunction.Learner<InputType>
The
VectorFunctionToScalarFunction.Learner class implements a
simple learner for a VectorFunctionToScalarFunction that allows
a learning algorithm that outputs a vector function to be adapted to
learn on data whose output are doubles. |