Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.confidence |
Provides confidence-weighted categorization algorithms.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.text.spelling |
Provides classes for spelling.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
An abstract implementation of the batch and incremental learning for
an incremental supervised learner.
|
Modifier and Type | Method and Description |
---|---|
AbstractBatchAndIncrementalLearner<DataType,ResultType> |
AbstractBatchAndIncrementalLearner.clone() |
Modifier and Type | Class and Description |
---|---|
static class |
VectorNaiveBayesCategorizer.OnlineLearner<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
An online (incremental) distributionLearner for the Naive Bayes
categorizer that uses an incremental distribution learner for the
distribution representing each dimension for each category.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveRegularizationOfWeights
An implementation of the Adaptive Regularization of Weights (AROW) algorithm
for online learning of a linear binary categorizer.
|
class |
ConfidenceWeightedDiagonalDeviation
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalDeviationProject
An implementation of the Standard Deviation (Stdev) algorithm for learning
a confidence-weighted categorizer.
|
class |
ConfidenceWeightedDiagonalVariance
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
class |
ConfidenceWeightedDiagonalVarianceProject
An implementation of the Variance algorithm for learning a confidence-weighted
linear categorizer.
|
Modifier and Type | Class and Description |
---|---|
class |
OnlineBaggingCategorizerLearner<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An implementation of an online version of the Bagging algorithm for learning
an ensemble of categorizers.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKernelizableBinaryCategorizerOnlineLearner
An abstract implementation of the
KernelizableBinaryCategorizerOnlineLearner
interface. |
class |
AbstractLinearCombinationOnlineLearner
An abstract class for online learning of linear binary categorizers that
take the form of a weighted sum of inputs.
|
class |
AbstractOnlineLinearBinaryCategorizerLearner
An abstract class for online (incremental) learning algorithms that produce
an
LinearBinaryCategorizer . |
class |
AggressiveRelaxedOnlineMaximumMarginAlgorithm
An implementation of the Aggressive Relaxed Online Maximum Margin Algorithm
(AROMMA).
|
class |
Ballseptron
An implementation of the Ballseptron algorithm.
|
class |
OnlineBinaryMarginInfusedRelaxedAlgorithm
An implementation of the binary MIRA algorithm.
|
class |
OnlineMultiPerceptron<CategoryType>
An online, multiple category version of the Perceptron algorithm.
|
static class |
OnlineMultiPerceptron.ProportionalUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a proportional
weight update on all categories that are scored higher than the true
category such that the weights sum to 1.0 and are proportional how much
larger the score was for each incorrect category than the true category.
|
static class |
OnlineMultiPerceptron.UniformUpdate<CategoryType>
Variant of a multi-category Perceptron that performs a uniform weight
update on all categories that are scored higher than the true category
such that the weights are equal and sum to -1.
|
class |
OnlinePassiveAggressivePerceptron
An implementation of the Passive-Aggressive algorithm for learning a linear
binary categorizer.
|
static class |
OnlinePassiveAggressivePerceptron.AbstractSoftMargin
An abstract class for soft-margin versions of the Passive-Aggressive
algorithm.
|
static class |
OnlinePassiveAggressivePerceptron.LinearSoftMargin
An implementation of the linear soft-margin variant of the Passive-
Aggressive algorithm (PA-I).
|
static class |
OnlinePassiveAggressivePerceptron.QuadraticSoftMargin
An implementation of the quadratic soft-margin variant of the Passive-
Aggressive algorithm (PA-II).
|
class |
OnlinePerceptron
An online version of the classic Perceptron algorithm.
|
class |
OnlineRampPassiveAggressivePerceptron
An implementation of the Ramp Loss Passive Aggressive Perceptron (PA^R) from
the referenced paper.
|
class |
OnlineShiftingPerceptron
An implementation of the Shifting Perceptron algorithm.
|
class |
OnlineVotedPerceptron
An online version of the Voted-Perceptron algorithm.
|
class |
RelaxedOnlineMaximumMarginAlgorithm
An implementation of the Relaxed Online Maximum Margin Algorithm
(ROMMA).
|
class |
Winnow
An implementation of the Winnow incremental learning algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractOnlineBudgetedKernelBinaryCategorizerLearner<InputType>
An abstract implementation of the
BudgetedKernelBinaryCategorizerLearner
for online learners. |
class |
AbstractOnlineKernelBinaryCategorizerLearner<InputType>
An abstract class for an online kernel binary categorizer learner.
|
class |
Forgetron<InputType>
An implementation of the "self-tuned" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Basic<InputType>
An implementation of the "basic" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
static class |
Forgetron.Greedy<InputType>
An implementation of the "greedy" Forgetron algorithm, which is an online
budgeted kernel binary categorizer learner.
|
class |
KernelBinaryCategorizerOnlineLearnerAdapter<InputType>
A wrapper class for a
KernelizableBinaryCategorizerOnlineLearner
that allows it to be used as a batch or incremental learner over the
input type directly, rather than using utility methods. |
class |
OnlineKernelPerceptron<InputType>
An implementation of the online version of the Perceptron algorithm.
|
class |
OnlineKernelRandomizedBudgetPerceptron<InputType>
An implementation of a fixed-memory kernel Perceptron algorithm.
|
class |
Projectron<InputType>
An implementation of the Projectron algorithm, which is an online kernel
binary categorizer learner that has a budget parameter tuned by the eta
parameter.
|
static class |
Projectron.LinearSoftMargin<InputType>
An implementation of the Projectron++ algorithm, which is an online
kernel binary categorizer learner that has a budget parameter tuned by
the eta parameter.
|
class |
RemoveOldestKernelPerceptron<InputType>
A budget kernel Perceptron that always removes the oldest item.
|
class |
Stoptron<InputType>
An online, budgeted, kernel version of the Perceptron algorithm that stops
learning once it has reached its budget.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractIncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
Partial implementation of
IncrementalEstimator . |
Modifier and Type | Class and Description |
---|---|
class |
AbstractKalmanFilter
Contains fields useful to both Kalman filters and extended Kalman filters.
|
class |
AbstractParticleFilter<ObservationType,ParameterType>
Partial abstract implementation of ParticleFilter.
|
class |
ExtendedKalmanFilter
Implements the Extended Kalman Filter (EKF), which is an extension of the
Kalman filter that allows nonlinear motion and observation models.
|
class |
KalmanFilter
A Kalman filter estimates the state of a dynamical system corrupted with
white Gaussian noise with observations that are corrupted with white
Gaussian noise.
|
class |
SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType>
An implementation of the standard Sampling Importance Resampling
particle filter.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
Partial implementation of ConjugatePriorBayesianEstimator that contains a initial belief
(prior) distribution function.
|
class |
BernoulliBayesianEstimator
A Bayesian estimator for the parameter of a BernoulliDistribution using
the conjugate prior BetaDistribution.
|
class |
BinomialBayesianEstimator
A Bayesian estimator for the parameter of a Bernoulli parameter, p,
of a BinomialDistribution using the conjugate prior BetaDistribution.
|
class |
ExponentialBayesianEstimator
Conjugate prior Bayesian estimator of the "rate" parameter of an
Exponential distribution using the conjugate prior Gamma distribution.
|
class |
GammaInverseScaleBayesianEstimator
A Bayesian estimator for the scale parameter of a Gamma distribution
using the conjugate prior Gamma distribution for the inverse-scale (rate)
of the Gamma.
|
class |
MultinomialBayesianEstimator
A Bayesian estimator for the parameters of a MultinomialDistribution using
its conjugate prior distribution, the DirichletDistribution.
|
class |
MultivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a MultivariateGaussian using its conjugate
prior, which is also a MultivariateGaussian.
|
class |
MultivariateGaussianMeanCovarianceBayesianEstimator
Performs robust estimation of both the mean and covariance of a
MultivariateGaussian conditional distribution using the conjugate prior
Normal-Inverse-Wishart distribution.
|
class |
PoissonBayesianEstimator
A Bayesian estimator for the parameter of a PoissonDistribution using
the conjugate prior GammaDistribution.
|
class |
UniformDistributionBayesianEstimator
A Bayesian estimator for a conditional Uniform(0,theta) distribution using
its conjugate prior Pareto distribution.
|
class |
UnivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a UnivariateGaussian using its conjugate
prior, which is also a UnivariateGaussian.
|
class |
UnivariateGaussianMeanVarianceBayesianEstimator
Computes the mean and variance of a univariate Gaussian using the
conjugate prior NormalInverseGammaDistribution
|
Modifier and Type | Class and Description |
---|---|
static class |
DefaultDataDistribution.Estimator<KeyType>
Estimator for a DefaultDataDistribution
|
static class |
DefaultDataDistribution.WeightedEstimator<KeyType>
A weighted estimator for a DefaultDataDistribution
|
static class |
MultivariateGaussian.IncrementalEstimator
The estimator that creates a MultivariateGaussian from a stream of
values.
|
static class |
MultivariateGaussian.IncrementalEstimatorCovarianceInverse
The estimator that creates a MultivariateGaussian from a stream of values
by estimating the mean and covariance inverse (as opposed to the
covariance directly), without ever performing a matrix inversion.
|
static class |
ScalarDataDistribution.Estimator
Estimator for a ScalarDataDistribution
|
static class |
UnivariateGaussian.IncrementalEstimator
Implements an incremental estimator for the sufficient statistics for
a UnivariateGaussian.
|
Modifier and Type | Class and Description |
---|---|
static class |
SimpleStatisticalSpellingCorrector.Learner
A learner for the
SimpleStatisticalSpellingCorrector . |