Package | Description |
---|---|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BayesianEstimatorPredictor<ObservationType,ParameterType,PosteriorType extends Distribution<? extends ParameterType>>
A BayesianEstimator that can also compute the predictive distribution of
new data given the posterior.
|
interface |
BayesianRegression<OutputType,PosteriorType extends Distribution<? extends Vector>>
A type of regression algorithm maps a Vector space, and the
weights of this Vector space are represented as a posterior distribution
given the observed InputOutputPairs.
|
interface |
MarkovChainMonteCarlo<ObservationType,ParameterType>
Defines the functionality of a Markov chain Monte Carlo algorithm.
|
interface |
ParticleFilter<ObservationType,ParameterType>
A particle filter aims to estimate a sequence of hidden parameters
based on observed data using point-mass estimates of the posterior
distribution.
|
interface |
RecursiveBayesianEstimator<ObservationType,ParameterType,BeliefType extends Distribution<ParameterType>>
A recursive Bayesian estimator is an estimation method that uses the
previous belief of the system parameter and a single observation to refine
the estimate of the system parameter.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractKalmanFilter
Contains fields useful to both Kalman filters and extended Kalman filters.
|
class |
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType>
Partial abstract implementation of MarkovChainMonteCarlo.
|
class |
AbstractParticleFilter<ObservationType,ParameterType>
Partial abstract implementation of ParticleFilter.
|
class |
BayesianLinearRegression
Computes a Bayesian linear estimator for a given feature function
and a set of observed data.
|
static class |
BayesianLinearRegression.IncrementalEstimator
Incremental estimator for BayesianLinearRegression
|
class |
BayesianRobustLinearRegression
Computes a Bayesian linear estimator for a given feature function given
a set of InputOutputPair observed values.
|
static class |
BayesianRobustLinearRegression.IncrementalEstimator
Incremental estimator for BayesianRobustLinearRegression
|
class |
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
number of clusters and the centroids of the clusters from a set of
data.
|
class |
ExtendedKalmanFilter
Implements the Extended Kalman Filter (EKF), which is an extension of the
Kalman filter that allows nonlinear motion and observation models.
|
class |
GaussianProcessRegression<InputType>
Gaussian Process Regression, is also known as Kriging, is a nonparametric
method to interpolate and extrapolate using Bayesian regression, where
the expressiveness of the estimator can grow with the data.
|
class |
ImportanceSampling<ObservationType,ParameterType>
Importance sampling is a Monte Carlo inference technique where we sample
from an easy distribution over the hidden variables (parameters) and then
weight the result by the ratio of the likelihood of the parameters given
the evidence and the likelihood of generating the parameters.
|
class |
KalmanFilter
A Kalman filter estimates the state of a dynamical system corrupted with
white Gaussian noise with observations that are corrupted with white
Gaussian noise.
|
class |
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
most general formulation of MCMC but can be slow.
|
class |
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
|
class |
RejectionSampling<ObservationType,ParameterType>
Rejection sampling is a method of inferring hidden parameters by using
an easy-to-sample-from distribution (times a scale factor) that envelopes
another distribution that is difficult to sample from.
|
class |
SamplingImportanceResamplingParticleFilter<ObservationType,ParameterType>
An implementation of the standard Sampling Importance Resampling
particle filter.
|
Modifier and Type | Interface and Description |
---|---|
interface |
ConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
A Bayesian Estimator that makes use of conjugate priors, which is a
mathematical trick when the conditional and the prior result a posterior
that is the same type as the prior.
|
interface |
ConjugatePriorBayesianEstimatorPredictor<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
A conjugate prior estimator that also has a closed-form predictive posterior.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConjugatePriorBayesianEstimator<ObservationType,ParameterType,ConditionalType extends ClosedFormDistribution<ObservationType>,BeliefType extends ClosedFormDistribution<ParameterType>>
Partial implementation of ConjugatePriorBayesianEstimator that contains a initial belief
(prior) distribution function.
|
class |
BernoulliBayesianEstimator
A Bayesian estimator for the parameter of a BernoulliDistribution using
the conjugate prior BetaDistribution.
|
class |
BinomialBayesianEstimator
A Bayesian estimator for the parameter of a Bernoulli parameter, p,
of a BinomialDistribution using the conjugate prior BetaDistribution.
|
class |
ExponentialBayesianEstimator
Conjugate prior Bayesian estimator of the "rate" parameter of an
Exponential distribution using the conjugate prior Gamma distribution.
|
class |
GammaInverseScaleBayesianEstimator
A Bayesian estimator for the scale parameter of a Gamma distribution
using the conjugate prior Gamma distribution for the inverse-scale (rate)
of the Gamma.
|
class |
MultinomialBayesianEstimator
A Bayesian estimator for the parameters of a MultinomialDistribution using
its conjugate prior distribution, the DirichletDistribution.
|
class |
MultivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a MultivariateGaussian using its conjugate
prior, which is also a MultivariateGaussian.
|
class |
MultivariateGaussianMeanCovarianceBayesianEstimator
Performs robust estimation of both the mean and covariance of a
MultivariateGaussian conditional distribution using the conjugate prior
Normal-Inverse-Wishart distribution.
|
class |
PoissonBayesianEstimator
A Bayesian estimator for the parameter of a PoissonDistribution using
the conjugate prior GammaDistribution.
|
class |
UniformDistributionBayesianEstimator
A Bayesian estimator for a conditional Uniform(0,theta) distribution using
its conjugate prior Pareto distribution.
|
class |
UnivariateGaussianMeanBayesianEstimator
Bayesian estimator for the mean of a UnivariateGaussian using its conjugate
prior, which is also a UnivariateGaussian.
|
class |
UnivariateGaussianMeanVarianceBayesianEstimator
Computes the mean and variance of a univariate Gaussian using the
conjugate prior NormalInverseGammaDistribution
|