Package | Description |
---|---|
gov.sandia.cognition.framework.learning.converter |
Provides implementations of
CogxelConverter s. |
gov.sandia.cognition.framework.lite |
Provides a lightweight implementation of the Cognitive Framework.
|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.gradient |
Provides gradient based learning algorithms.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization |
Provides minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.matrix |
Provides matrix solving algorithms.
|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
gov.sandia.cognition.math.matrix.custom |
Provides a custom linear algebra package implementation for both dense
and sparse classes.
|
gov.sandia.cognition.math.matrix.decomposition |
Provides matrix decompositions.
|
gov.sandia.cognition.math.matrix.mtj |
Provides a linear algebra package implementation wrapper using the Matrix
Toolkits for Java (MTJ) library.
|
gov.sandia.cognition.math.matrix.mtj.decomposition |
Provides matrix decomposition implementations using the Matrix Toolkits for
Java (MTJ) library.
|
gov.sandia.cognition.math.signals |
Provides mathematical signal processing methods.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.text.term.relation |
Provides relationships between terms.
|
gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
CogxelMatrixConverter.fromCogxels(CogxelState cogxels)
Converts from a CogxelState object to an object of type DataType.
|
Modifier and Type | Method and Description |
---|---|
void |
CogxelMatrixConverter.toCogxels(Matrix data,
CogxelState cogxels)
Converts from an object of type DataType to an updated CogxelState.
|
Modifier and Type | Method and Description |
---|---|
protected void |
SimplePatternRecognizer.setMatrix(Matrix matrix)
Sets the underlying matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
VectorizablePerturber.getCovarianceSqrt()
Gets the covariance square root matrix.
|
Modifier and Type | Method and Description |
---|---|
void |
VectorizablePerturber.setCovariance(Matrix covariance)
Sets the covariance of the perturber.
|
protected void |
VectorizablePerturber.setCovarianceSqrt(Matrix covarianceSqrt)
Sets the covariance square root matrix.
|
Constructor and Description |
---|
VectorizablePerturber(java.util.Random random,
Matrix covariance)
Creates a new instance of VectorizablePerturber.
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
FactorizationMachine.factors
The k x d factor matrix (v) with k factors for each dimension.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
FactorizationMachine.getFactors()
Gets the matrix of factors.
|
Modifier and Type | Method and Description |
---|---|
void |
FactorizationMachine.setFactors(Matrix factors)
Sets the matrix of factors.
|
Constructor and Description |
---|
FactorizationMachine(double bias,
Vector weights,
Matrix factors)
Creates a new
FactorizationMachine with the given parameters. |
Modifier and Type | Method and Description |
---|---|
Matrix |
GradientDescendable.computeParameterGradient(Vector input)
Computes the derivative of the function about the input with respect
to the parameters of the function.
|
Matrix |
GradientDescendableApproximator.computeParameterGradient(Vector input)
Computes a forward-differences approximation to the parameter Jacobian
|
static Matrix |
GradientDescendableApproximator.computeParameterGradient(VectorizableVectorFunction function,
Vector input,
double deltaSize)
Computes a forward-differences approximation to the parameter Jacobian
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
MarkovChain.transitionProbability
Transition probability matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
ParallelHiddenMarkovModel.ComputeTransitionsTask.call() |
protected Matrix |
HiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b)
Computes the stochastic transition-probability matrix from the
given probabilities.
|
protected Matrix |
ParallelHiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b) |
protected static Matrix |
HiddenMarkovModel.computeTransitions(Vector alphan,
Vector betanp1,
Vector bnp1)
Computes the stochastic transition-probability matrix from the
given probabilities.
|
protected static Matrix |
MarkovChain.createUniformTransitionProbability(int numStates)
Creates a uniform transition-probability Matrix
|
Matrix |
MarkovChain.getTransitionProbability()
Getter for transitionProbability.
|
protected Matrix |
BaumWelchAlgorithm.updateTransitionMatrix(java.util.ArrayList<Matrix> sequenceTransitionMatrices)
Computes an updated transition matrix from the scaled estimates
|
Modifier and Type | Method and Description |
---|---|
protected Pair<java.util.ArrayList<java.util.ArrayList<Vector>>,java.util.ArrayList<Matrix>> |
BaumWelchAlgorithm.computeSequenceParameters()
Computes the gammas and A matrices for each sequence.
|
Modifier and Type | Method and Description |
---|---|
protected void |
MarkovChain.normalizeTransitionMatrix(Matrix A)
Normalizes the transition-probability matrix
|
protected void |
ParallelHiddenMarkovModel.normalizeTransitionMatrix(Matrix A) |
protected static void |
MarkovChain.normalizeTransitionMatrix(Matrix A,
int j)
Normalizes a column of the transition-probability matrix
|
void |
MarkovChain.setTransitionProbability(Matrix transitionProbability)
Setter for transitionProbability.
|
Modifier and Type | Method and Description |
---|---|
protected Matrix |
BaumWelchAlgorithm.updateTransitionMatrix(java.util.ArrayList<Matrix> sequenceTransitionMatrices)
Computes an updated transition matrix from the scaled estimates
|
Constructor and Description |
---|
HiddenMarkovModel(Vector initialProbability,
Matrix transitionProbability,
java.util.Collection<? extends ComputableDistribution<ObservationType>> emissionFunctions)
Creates a new instance of ContinuousDensityHiddenMarkovModel
|
MarkovChain(Vector initialProbability,
Matrix transitionProbability)
Creates a new instance of ContinuousDensityHiddenMarkovModel
|
ParallelHiddenMarkovModel(Vector initialProbability,
Matrix transitionProbability,
java.util.Collection<? extends ComputableDistribution<ObservationType>> emissionFunctions)
Creates a new instance of ParallelHiddenMarkovModel
|
Modifier and Type | Method and Description |
---|---|
static boolean |
FunctionMinimizerBFGS.BFGSupdateRule(Matrix hessianInverse,
Vector delta,
Vector gamma,
double tolerance)
BFGS Quasi-Newton update rule
|
boolean |
FunctionMinimizerBFGS.updateHessianInverse(Matrix hessianInverse,
Vector delta,
Vector gamma) |
protected boolean |
FunctionMinimizerDFP.updateHessianInverse(Matrix hessianInverse,
Vector delta,
Vector gamma) |
protected abstract boolean |
FunctionMinimizerQuasiNewton.updateHessianInverse(Matrix hessianInverse,
Vector delta,
Vector gamma)
The step that makes BFGS/DFP/SR1 different from each other.
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
MatrixVectorMultiplier.m
The matrix to multiply with.
|
Constructor and Description |
---|
MatrixVectorMultiplier(Matrix m)
Clones the input matrix to prevent any later edits to the input from
changing the results of iterative multiplications.
|
MatrixVectorMultiplierDiagonalPreconditioner(Matrix m)
Creates a new
MatrixVectorMultiplierDiagonalPreconditioner for
the given matrix. |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
KernelPrincipalComponentsAnalysis.Function.components
The matrix of components for the function.
|
protected Matrix |
KernelPrincipalComponentsAnalysis.Function.kernelMatrix
The kernel matrix for all the data the KPCA was done over.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
KernelPrincipalComponentsAnalysis.Function.getComponents()
Gets the matrix of components from the analysis.
|
Matrix |
KernelPrincipalComponentsAnalysis.Function.getKernelMatrix()
Gets the kernel matrix for the data that the analysis was done over.
|
Modifier and Type | Method and Description |
---|---|
void |
KernelPrincipalComponentsAnalysis.Function.setComponents(Matrix components)
Sets the matrix of components from the analysis.
|
void |
KernelPrincipalComponentsAnalysis.Function.setKernelMatrix(Matrix kernelMatrix)
Sets the kernel matrix for the data that the analysis was done over.
|
Constructor and Description |
---|
Function(Kernel<? super DataType> kernel,
java.util.List<? extends DataType> data,
Matrix components,
boolean centerData,
Matrix kernelMatrix)
Creates a new Kernel Principal Components Analysis function.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
DatasetUtil.computeOuterProductDataMatrix(java.util.ArrayList<? extends Vector> data)
Computes the outer-product Matrix of the given set of data:
XXt = [ x1 x2 ...
|
Modifier and Type | Method and Description |
---|---|
Matrix |
MultivariateDecorrelator.getCovariance()
Gets the covariance.
|
Matrix |
MultivariateDecorrelator.getCovarianceInverseSquareRoot()
Gets the square root of the inverse of the covariance matrix.
|
Constructor and Description |
---|
MultivariateDecorrelator(Vector mean,
Matrix covariance)
Creates a new instance of MultivariateDecorrelator with the given
mean and variance.
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
DefaultConfidenceWeightedBinaryCategorizer.covariance
The covariance matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
ConfidenceWeightedBinaryCategorizer.getCovariance()
Gets the covariance matrix of the categorizer.
|
Matrix |
DefaultConfidenceWeightedBinaryCategorizer.getCovariance() |
Modifier and Type | Method and Description |
---|---|
void |
DefaultConfidenceWeightedBinaryCategorizer.setCovariance(Matrix covariance)
Sets the covariance matrix.
|
Constructor and Description |
---|
DefaultConfidenceWeightedBinaryCategorizer(Vector mean,
Matrix covariance)
Creates a new
DefaultConfidenceWeightedBinaryCategorizer with
the given mean and covariance. |
Modifier and Type | Field and Description |
---|---|
Matrix |
SumSquaredErrorCostFunction.Cache.J
Jacobian
|
Matrix |
SumSquaredErrorCostFunction.Cache.JtJ
Inner-product of the Jacobian matrix: J.transpose().times( J )
|
Constructor and Description |
---|
Cache(Matrix J,
Matrix JtJ,
Vector Jte,
double parameterCost)
Creates a new instance of Cache
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
ThreeLayerFeedforwardNeuralNetwork.hiddenToOutputWeights
Matrix of weights to pre-multiply the hidden-unit activations by.
|
protected Matrix |
ThreeLayerFeedforwardNeuralNetwork.inputToHiddenWeights
Matrix of weights to pre-multiply the inputs by.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
MultivariateDiscriminant.computeParameterGradient(Matrix matrix,
Vector input)
Computes the parameter gradient of the given matrix post-multiplied
by the input Vector
|
Matrix |
DifferentiableFeedforwardNeuralNetwork.computeParameterGradient(Vector input) |
Matrix |
DifferentiableGeneralizedLinearModel.computeParameterGradient(Vector input) |
Matrix |
MultivariateDiscriminant.computeParameterGradient(Vector input) |
Matrix |
MultivariateDiscriminantWithBias.computeParameterGradient(Vector input) |
Matrix |
ThreeLayerFeedforwardNeuralNetwork.computeParameterGradient(Vector input) |
Matrix |
DifferentiableGeneralizedLinearModel.differentiate(Vector input) |
Matrix |
ElementWiseDifferentiableVectorFunction.differentiate(Vector input) |
Matrix |
LinearVectorFunction.differentiate(Vector input) |
Matrix |
MultivariateDiscriminant.differentiate(Vector input) |
Matrix |
MultivariateDiscriminant.getDiscriminant()
Getter for discriminant.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
MultivariateDiscriminant.computeParameterGradient(Matrix matrix,
Vector input)
Computes the parameter gradient of the given matrix post-multiplied
by the input Vector
|
protected void |
MultivariateDiscriminant.setDiscriminant(Matrix discriminant)
Setter for discriminant
|
Constructor and Description |
---|
MultivariateDiscriminant(Matrix discriminant)
Creates a new instance of MatrixVectorMultiplyFunction.
|
MultivariateDiscriminantWithBias(Matrix discriminant)
Creates a new instance of MultivariateDiscriminantWithBias.
|
MultivariateDiscriminantWithBias(Matrix discriminant,
Vector bias)
Creates a new instance of MultivariateDiscriminantWithBias.
|
Modifier and Type | Method and Description |
---|---|
static Matrix |
MultivariateStatisticsUtil.computeVariance(java.util.Collection<? extends Vector> data)
Computes the variance (second central moment, squared standard deviation)
of a dataset.
|
static Matrix |
MultivariateStatisticsUtil.computeVariance(java.util.Collection<? extends Vector> data,
Vector mean)
Computes the variance (second central moment, squared standard deviation)
of a dataset
|
Modifier and Type | Method and Description |
---|---|
static Pair<Vector,Matrix> |
MultivariateStatisticsUtil.computeMeanAndCovariance(java.lang.Iterable<? extends Vectorizable> data)
Computes the mean and unbiased covariance Matrix of a multivariate
data set.
|
static Pair<Vector,Matrix> |
MultivariateStatisticsUtil.computeWeightedMeanAndCovariance(java.lang.Iterable<? extends WeightedValue<? extends Vectorizable>> data)
Computes the mean and biased covariance Matrix of a multivariate
weighted data set.
|
Modifier and Type | Class and Description |
---|---|
class |
MatrixFactory<MatrixType extends Matrix>
Abstract factory for creating
Matrix objects. |
Modifier and Type | Interface and Description |
---|---|
interface |
DiagonalMatrix
Interface describing a diagonal matrix.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMatrix
Abstract implementation of some low-hanging functions in the Matrix
interface.
|
Modifier and Type | Field and Description |
---|---|
protected static MatrixFactory<? extends Matrix> |
MatrixFactory.DEFAULT_DENSE_INSTANCE
The default dense implementation of a
MatrixFactory . |
protected static MatrixFactory<? extends Matrix> |
MatrixFactory.DEFAULT_SPARSE_INSTANCE
The default sparse implementation of a
MatrixFactory . |
Modifier and Type | Method and Description |
---|---|
Matrix |
Matrix.clone() |
Matrix |
Quaternion.convertToRotationMatrix()
Converts the quaternion to a 3-by-3 rotation matrix.
|
Matrix |
DifferentiableVectorFunction.differentiate(Vector input)
Differentiate the VectorFunction at
input and return
the Jacobian |
Matrix |
NumericalDifferentiator.MatrixJacobian.differentiate(Vector input) |
static Matrix |
NumericalDifferentiator.MatrixJacobian.differentiate(Vector input,
Evaluator<? super Vector,Vector> f)
Static access to the numerical differentiation procedure.
|
static Matrix |
NumericalDifferentiator.MatrixJacobian.differentiate(Vectorizable input,
Evaluator<? super Vector,Vector> f,
double h)
Static access to the numerical differentiation procedure.
|
Matrix |
AbstractMatrix.dotDivide(Matrix other) |
Matrix |
Matrix.dotDivide(Matrix other)
Element-wise division of
this by other . |
Matrix |
Matrix.getSubMatrix(int minRow,
int maxRow,
int minColumn,
int maxColumn)
Gets the embedded submatrix inside of the Matrix, specified by the
inclusive, zero-based indices such that the result matrix will have size
(maxRow-minRow+1) x (maxColum-minCcolumn+1)
|
Matrix |
Matrix.inverse()
Computes the full-blown inverse of
this , which must be a
square matrix |
Matrix |
AbstractVector.outerProduct(Vector other) |
Matrix |
Vector.outerProduct(Vector other)
Computes the outer matrix product between the two vectors
|
Matrix |
AbstractMatrix.pseudoInverse() |
Matrix |
Matrix.pseudoInverse()
Computes the effective pseudo-inverse of
this , using a
rather expensive procedure (SVD) |
Matrix |
Matrix.pseudoInverse(double effectiveZero)
Computes the effective pseudo-inverse of
this , using a
rather expensive procedure (SVD) |
Matrix |
MatrixReader.read()
Reads the next Matrix found in the specified Reader
|
Matrix |
Matrix.solve(Matrix B)
Solves for "X" in the equation: this*X = B
|
Matrix |
AbstractMatrix.times(Matrix other) |
Matrix |
Matrix.times(Matrix matrix)
Matrix multiplication of
this and matrix ,
operates like the "* " operator in Matlab |
Matrix |
Matrix.transpose()
Returns the transpose of
this |
Modifier and Type | Method and Description |
---|---|
static MatrixFactory<? extends Matrix> |
MatrixFactory.getDefault()
Gets the default implementation of
MatrixFactory . |
static MatrixFactory<? extends Matrix> |
MatrixFactory.getDenseDefault()
Gets the default implementation of
MatrixFactory for dense
matrices. |
MatrixFactory<? extends Matrix> |
MatrixFactoryContainer.getMatrixFactory()
Gets the matrix factory the object to use to create new matrices.
|
static MatrixFactory<? extends Matrix> |
MatrixFactory.getSparseDefault()
Gets the default implementation of
MatrixFactory for sparse
matrices. |
Modifier and Type | Method and Description |
---|---|
void |
AbstractMatrix.assertMultiplicationDimensions(Matrix postMultiplicationMatrix) |
void |
Matrix.assertMultiplicationDimensions(Matrix postMultiplicationMatrix)
Checks to see if the dimensions are appropriate for:
this.times(postMultiplicationMatrix) . |
void |
AbstractMatrix.assertSameDimensions(Matrix other) |
void |
Matrix.assertSameDimensions(Matrix otherMatrix)
Throws a DimensionalityMismatchException if dimensions between this
and otherMatrix aren't the same
|
boolean |
AbstractMatrix.checkMultiplicationDimensions(Matrix postMultiplicationMatrix) |
boolean |
Matrix.checkMultiplicationDimensions(Matrix postMultiplicationMatrix)
Checks to see if the dimensions are appropriate for:
this.times( postMultiplicationMatrix ) |
boolean |
AbstractMatrix.checkSameDimensions(Matrix otherMatrix) |
boolean |
Matrix.checkSameDimensions(Matrix otherMatrix)
Checks to see if the dimensions are the same between
this
and otherMatrix |
void |
Quaternion.convertFromRotationMatrix(Matrix rotationMatrix)
Sets the quaternion to be equivalent to the given a 3-by-3 rotation
matrix.
|
abstract MatrixType |
MatrixFactory.copyMatrix(Matrix m)
Creates a deep copy new Matrix given another, argument is unchanged
|
Matrix |
AbstractMatrix.dotDivide(Matrix other) |
Matrix |
Matrix.dotDivide(Matrix other)
Element-wise division of
this by other . |
void |
AbstractMatrix.dotDivideEquals(Matrix other) |
void |
Matrix.dotDivideEquals(Matrix other)
Inline element-wise division of
this by other . |
DiagonalMatrix |
DiagonalMatrix.dotTimes(Matrix matrix) |
void |
AbstractMatrix.dotTimesEquals(Matrix other) |
boolean |
AbstractMatrix.equals(Matrix other,
double effectiveZero) |
void |
AbstractMatrix.minusEquals(Matrix other) |
void |
AbstractMatrix.plusEquals(Matrix other) |
void |
AbstractMatrix.scaledPlusEquals(double scaleFactor,
Matrix other) |
void |
AbstractMatrix.setSubMatrix(int minRow,
int minColumn,
Matrix submatrix) |
void |
Matrix.setSubMatrix(int minRow,
int minColumn,
Matrix submatrix)
Sets the submatrix inside of the Matrix, specified by the zero-based
indices.
|
Matrix |
Matrix.solve(Matrix B)
Solves for "X" in the equation: this*X = B
|
Matrix |
AbstractMatrix.times(Matrix other) |
Vector |
AbstractVector.times(Matrix matrix) |
Matrix |
Matrix.times(Matrix matrix)
Matrix multiplication of
this and matrix ,
operates like the "* " operator in Matlab |
Vector |
Vector.times(Matrix matrix)
Premultiplies the matrix by the vector "this"
|
void |
MatrixWriter.write(Matrix matrix)
Writes the given matrix to the Java-based writer
|
Modifier and Type | Class and Description |
---|---|
class |
DenseMatrix
A dense matrix implementation.
|
class |
DiagonalMatrix
Diagonal matrices are a special case, but a rather common one with very quick
and simple solutions to multiplications, inverses, etc.
|
class |
ParallelSparseMatrix
A sparse matrix implementation.
|
class |
SparseMatrix
A sparse matrix implementation.
|
Modifier and Type | Field and Description |
---|---|
Matrix |
DenseMatrix.LU.L
The lower triangular matrix resulting from the factorization.
|
Matrix |
DenseMatrix.QR.Q
The orthonormal basis matrix
|
Matrix |
DenseMatrix.QR.R
The upper-triangular matrix
|
Matrix |
DenseMatrix.SVD.Sigma
* The singular value diagonal matrix.
|
Matrix |
DenseMatrix.SVD.U
The left basis matrix.
|
Matrix |
DenseMatrix.LU.U
The upper triangular matrix resulting from the factorization.
|
Matrix |
DenseMatrix.SVD.V
The right basis matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
DenseMatrix.clone()
Returns a deep copy of this.
|
Matrix |
DiagonalMatrix.clone() |
Matrix |
ParallelSparseMatrix.clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
Matrix |
SparseMatrix.clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
Matrix |
DenseMatrix.LU.getPivotMatrix()
Helper method converts P into a pivot matrix that can pre-multiply
L*U.
|
Matrix |
DenseMatrix.getSubMatrix(int minRow,
int maxRow,
int minColumn,
int maxColumn)
Gets the embedded submatrix inside of the Matrix, specified by the
inclusive, zero-based indices such that the result matrix will have size
(maxRow-minRow+1) x (maxColum-minCcolumn+1)
|
Matrix |
DiagonalMatrix.getSubMatrix(int minRow,
int maxRow,
int minColumn,
int maxColumn) |
Matrix |
SparseMatrix.getSubMatrix(int minRow,
int maxRow,
int minColumn,
int maxColumn)
Gets the embedded submatrix inside of the Matrix, specified by the
inclusive, zero-based indices such that the result matrix will have size
(maxRow-minRow+1) x (maxColum-minCcolumn+1)
|
Matrix |
DenseMatrix.inverse() |
Matrix |
DiagonalMatrix.inverse()
Computes the full-blown inverse of
this , which must be a
square matrix |
Matrix |
SparseMatrix.inverse()
Computes the full-blown inverse of
this , which must be a
square matrix |
Matrix |
DenseVector.outerProduct(DenseVector other) |
Matrix |
SparseVector.outerProduct(DenseVector other) |
Matrix |
DenseVector.outerProduct(SparseVector other) |
Matrix |
SparseVector.outerProduct(SparseVector other) |
Matrix |
SparseMatrix.preTimes(DiagonalMatrix other)
Package-private helper for the diagonal matrix class.
|
Matrix |
DenseMatrix.pseudoInverse(double effectiveZero) |
Matrix |
DiagonalMatrix.pseudoInverse(double effectiveZero) |
Matrix |
SparseMatrix.pseudoInverse(double effectiveZero)
Computes the effective pseudo-inverse of
this , using a
rather expensive procedure (SVD) |
Matrix |
DenseMatrix.solve(Matrix B) |
Matrix |
DiagonalMatrix.solve(Matrix B) |
Matrix |
SparseMatrix.solve(Matrix B)
Solves for "X" in the equation: this*X = B
|
Matrix |
DenseMatrix.times(DenseMatrix other) |
Matrix |
DiagonalMatrix.times(DenseMatrix other) |
Matrix |
SparseMatrix.times(DenseMatrix other)
Type-specific version of times for combining whatever type this is with
the input dense matrix.
|
Matrix |
DenseMatrix.times(DiagonalMatrix other) |
Matrix |
DiagonalMatrix.times(DiagonalMatrix other) |
Matrix |
SparseMatrix.times(DiagonalMatrix other)
Type-specific version of times for combining whatever type this is with
the input diagonal matrix.
|
Matrix |
DenseMatrix.times(SparseMatrix other) |
Matrix |
DiagonalMatrix.times(SparseMatrix other) |
Matrix |
SparseMatrix.times(SparseMatrix other)
Type-specific version of times for combining whatever type this is with
the input sparse matrix.
|
Matrix |
DenseMatrix.transpose() |
Matrix |
DiagonalMatrix.transpose() |
Matrix |
SparseMatrix.transpose()
Returns the transpose of
this |
Modifier and Type | Method and Description |
---|---|
DenseMatrix |
CustomDenseMatrixFactory.copyMatrix(Matrix m)
Creates a deep copy of m into a DenseMatrix and returns it.
|
DiagonalMatrix |
CustomDiagonalMatrixFactory.copyMatrix(Matrix m)
Creates a deep copy new Matrix given another, argument is unchanged
|
SparseMatrix |
CustomSparseMatrixFactory.copyMatrix(Matrix m)
Creates a deep copy new Matrix given another, argument is unchanged
|
Matrix |
DenseMatrix.solve(Matrix B) |
Matrix |
DiagonalMatrix.solve(Matrix B) |
Matrix |
SparseMatrix.solve(Matrix B)
Solves for "X" in the equation: this*X = B
|
Constructor and Description |
---|
DenseMatrix(Matrix m)
Copy constructor that copies any input Matrix -- creating a deep copy of
the matrix.
|
DiagonalMatrix(Matrix m)
Creates a diagonal matrix as a copy of the given matrix.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
AbstractEigenDecomposition.getEigenVectorsImaginaryPart()
gets the imaginary part of the eienvector, where the ith eigenvector is the
ith column
|
Matrix |
EigenDecomposition.getEigenVectorsImaginaryPart()
Returns a matrix with the imaginary parts of the right eigenvalues of
the underlying matrix
|
Matrix |
AbstractEigenDecomposition.getEigenVectorsRealPart()
getter for eigenvectorsrealPart
|
Matrix |
EigenDecomposition.getEigenVectorsRealPart()
Returns a matrix with the real parts of the right eigenvalues of the
underlying matrix
|
Matrix |
AbstractSingularValueDecomposition.getS() |
Matrix |
SingularValueDecomposition.getS()
Gets the PSD diagonal matrix containing the sorted singular values
|
Matrix |
AbstractSingularValueDecomposition.getU() |
Matrix |
SingularValueDecomposition.getU()
Gets the orthonormal matrix containing the left singular vectors of the
underlying matrix
|
Matrix |
AbstractSingularValueDecomposition.getVtranspose() |
Matrix |
SingularValueDecomposition.getVtranspose()
Gets the transpose of the orthonormal matrix containing the right
singular vectors of the underlying matrix
|
Matrix |
AbstractSingularValueDecomposition.pseudoInverse() |
Matrix |
SingularValueDecomposition.pseudoInverse()
Computes the Least Squares pseudoinverse of the underlying matrix
|
Matrix |
AbstractSingularValueDecomposition.pseudoInverse(double effectiveZero) |
Matrix |
SingularValueDecomposition.pseudoInverse(double effectiveZero)
Computes the Least Squares pseudoinverse of the underlying matrix,
while clipping the singular values at effectiveZero
|
Modifier and Type | Method and Description |
---|---|
static double |
EigenvectorPowerIteration.estimateEigenvalue(Matrix A,
Vector v)
Finds the eigenvalue associated with the given Matrix and eigenvector.
|
static Vector |
EigenvectorPowerIteration.estimateEigenvector(Vector initial,
Matrix A,
double stoppingThreshold,
int maxIterations)
Estimates the eigenvector corresponding to the largest magnitude
eigenvalue.
|
static java.util.ArrayList<Vector> |
EigenvectorPowerIteration.estimateEigenvectors(Matrix A,
int numEigenvectors)
Estimates the top eigenvectors of the given matrix using the power
iteration algorithm.
|
static java.util.ArrayList<Vector> |
EigenvectorPowerIteration.estimateEigenvectors(Matrix A,
int numEigenvectors,
double stoppingThreshold,
int maxIterations)
Estimates the top eigenvectors of the given matrix using the power
iteration algorithm.
|
protected void |
AbstractEigenDecomposition.setEigenDecomposition(ComplexNumber[] eigenValues,
Matrix eigenVectorsRealPart,
Matrix eigenVectorsImaginaryPart,
boolean sort)
Sets the eigen decomposition for this
|
void |
AbstractEigenDecomposition.setEigenVectorsImaginaryPart(Matrix eigenVectorsImaginaryPart)
setter for the imaginary part of the eienvector, where the ith eigenvector is
the ith column
|
protected void |
AbstractEigenDecomposition.setEigenVectorsRealPart(Matrix eigenVectorsRealPart)
setter for eigenVectorsRealPart, where the ith eigenvector is the ith column
|
protected void |
AbstractSingularValueDecomposition.setS(Matrix S)
setter for the singular values matrix
|
protected void |
AbstractSingularValueDecomposition.setU(Matrix U)
setter for left singular vectors
|
protected void |
AbstractEigenDecomposition.setUnsortedEigenDecomposition(ComplexNumber[] eigenValues,
Matrix eigenVectorsRealPart,
Matrix eigenVectorsImaginaryPart)
Creates a new eigendecomposition using the given eigenvalues and
eigenvectors...
|
protected void |
AbstractSingularValueDecomposition.setVtranspose(Matrix Vtranspose)
sets the transpose of the right singular vectors matrix
|
protected void |
AbstractEigenDecomposition.sortAndSetEigenDecomposition(ComplexNumber[] eigenValues,
Matrix eigenVectorsRealPart,
Matrix eigenVectorsImaginaryPart)
Sorts the eigendecomposition in descending order of the value of the
magnitudes of the eigenvalues
|
Constructor and Description |
---|
AbstractEigenDecomposition(ComplexNumber[] eigenValues,
Matrix eigenVectorsRealPart,
Matrix eigenVectorsImaginaryPart)
Stores the given eigenvalues and eigenvectors internally, the eigenvalues
and eigenvectors will not be sorted.
|
AbstractEigenDecomposition(ComplexNumber[] eigenValues,
Matrix eigenVectorsRealPart,
Matrix eigenVectorsImaginaryPart,
boolean sort)
Creates a new eigendecomposition using the given eigenvalues and
eigenvectors...
|
AbstractSingularValueDecomposition(Matrix U,
Matrix S,
Matrix Vtranspose)
Creates a new instance of AbstractSingularValueDecomposition where
U*S*Vtranspose = original_matrix
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMTJMatrix
Relies on internal MTJ matrix to do some of the heavy lifting, without
assuming that the underlying matrix is Dense or Sparse
|
class |
AbstractSparseMatrix
Implements some generic operations that any sparse-matrix representation
must do.
|
class |
DiagonalMatrixMTJ
A diagonal matrix that wraps MTJ's BandMatrix class.
|
class |
SparseColumnMatrix
A sparse matrix, represented as a collection of sparse column vectors.
|
class |
SparseRowMatrix
A sparse matrix, represented as a collection of sparse row vectors.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
AbstractMTJMatrix.inverse() |
Matrix |
AbstractMTJVector.outerProduct(Vector other) |
Matrix |
AbstractMTJMatrix.solve(AbstractMTJMatrix B)
Solves for "X" in the equation this * X = B, where X is a DenseMatrix,
"this" and "B" will be converted to a DenseMatrix (if not already)
|
Matrix |
AbstractMTJMatrix.solve(Matrix B) |
Matrix |
DiagonalMatrixMTJ.solve(Matrix B) |
Matrix |
AbstractMTJMatrix.times(Matrix matrix) |
Modifier and Type | Method and Description |
---|---|
DenseMatrix |
DenseMatrixFactoryMTJ.copyMatrix(Matrix m) |
DiagonalMatrixMTJ |
DiagonalMatrixFactoryMTJ.copyMatrix(Matrix m) |
SparseMatrix |
SparseMatrixFactoryMTJ.copyMatrix(Matrix m) |
DiagonalMatrixMTJ |
DiagonalMatrixMTJ.dotTimes(Matrix matrix) |
void |
AbstractMTJMatrix.dotTimesEquals(Matrix other) |
void |
AbstractMTJMatrix.minusEquals(Matrix other) |
void |
AbstractMTJMatrix.plusEquals(Matrix other) |
void |
AbstractMTJMatrix.scaledPlusEquals(double scaleFactor,
Matrix other) |
Matrix |
AbstractMTJMatrix.solve(Matrix B) |
Matrix |
DiagonalMatrixMTJ.solve(Matrix B) |
Matrix |
AbstractMTJMatrix.times(Matrix matrix) |
Vector |
AbstractMTJVector.times(Matrix matrix) |
Constructor and Description |
---|
DenseMatrix(Matrix matrix)
Creates a new instance of DenseMatrix
|
SparseColumnMatrix(Matrix matrix)
Copy constructor for general matrices, copies over nonzero values.
|
SparseMatrix(Matrix matrix)
Converts the given matrix to a SparseMatrix.
|
SparseRowMatrix(Matrix matrix)
Copy constructor for general matrices, copies over nonzero values.
|
Modifier and Type | Method and Description |
---|---|
static SingularValueDecompositionMTJ |
SingularValueDecompositionMTJ.create(Matrix matrix)
Creates a new instance of SingularValueDecompositionMTJ
|
Modifier and Type | Method and Description |
---|---|
Matrix |
LinearDynamicalSystem.getA()
Getter for A.
|
Matrix |
LinearDynamicalSystem.getB()
Getter for B.
|
Matrix |
LinearDynamicalSystem.getC()
Getter for C.
|
Modifier and Type | Method and Description |
---|---|
void |
LinearDynamicalSystem.setA(Matrix A)
Setter for A.
|
void |
LinearDynamicalSystem.setB(Matrix B)
Setter for B.
|
void |
LinearDynamicalSystem.setC(Matrix C)
Setter for C.
|
Constructor and Description |
---|
LinearDynamicalSystem(Matrix A,
Matrix B)
Creates a new instance of LinearDynamicalSystem
|
LinearDynamicalSystem(Matrix A,
Matrix B,
Matrix C)
Creates a new instance of LinearDynamicalSystem
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
AbstractKalmanFilter.measurementCovariance
Covariance associated with the measurements.
|
protected Matrix |
AbstractKalmanFilter.modelCovariance
Covariance associated with the system's model.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
AbstractKalmanFilter.computePredictionCovariance(Matrix A,
Matrix beliefCovariance)
Computes the prediction covariance from the Jacobian and believe
covariance
|
Matrix |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic.getCovarianceInverse()
Getter for covarianceInverse
|
Matrix |
BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic.getCovarianceInverse()
Getter for covarianceInverse
|
Matrix |
AbstractKalmanFilter.getMeasurementCovariance()
Getter for measurementCovariance
|
Matrix |
AbstractKalmanFilter.getModelCovariance()
Getter for modelCovariance
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractKalmanFilter.computeMeasurementBelief(MultivariateGaussian belief,
Vector innovation,
Matrix C)
Updates the measurement belief by computing the Kalman gain and
incorporating the innovation into the estimate
|
Matrix |
AbstractKalmanFilter.computePredictionCovariance(Matrix A,
Matrix beliefCovariance)
Computes the prediction covariance from the Jacobian and believe
covariance
|
void |
AbstractKalmanFilter.setMeasurementCovariance(Matrix measurementCovariance)
Setter for measurementCovariance
|
void |
AbstractKalmanFilter.setModelCovariance(Matrix modelCovariance)
Setter for modelCovariance
|
Constructor and Description |
---|
AbstractKalmanFilter(Vector currentInput,
Matrix modelCovariance,
Matrix measurementCovariance)
Creates a new instance of AbstractKalmanFilter
|
ExtendedKalmanFilter(StatefulEvaluator<Vector,Vector,Vector> motionModel,
Evaluator<Vector,Vector> observationModel,
Vector currentInput,
Matrix modelCovariance,
Matrix measurementCovariance)
Creates a new instance of ExtendedKalmanFilter
|
KalmanFilter(LinearDynamicalSystem model,
Matrix modelCovariance,
Matrix measurementCovariance)
Creates a new instance of LinearUpdater
|
Modifier and Type | Method and Description |
---|---|
Matrix |
MultivariateGaussianMeanBayesianEstimator.getKnownCovarianceInverse()
Getter for knownCovarianceInverse.
|
Matrix |
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter.getValue() |
Modifier and Type | Method and Description |
---|---|
void |
MultivariateGaussianMeanBayesianEstimator.setKnownCovarianceInverse(Matrix knownCovarianceInverse)
Setter for knownCovarianceInverse.
|
void |
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter.setValue(Matrix value) |
Constructor and Description |
---|
MultivariateGaussianMeanBayesianEstimator(Matrix knownCovarianceInverse)
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
|
MultivariateGaussianMeanBayesianEstimator(Matrix knownCovarianceInverse,
MultivariateGaussian belief)
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
|
Constructor and Description |
---|
MultivariateGaussianMeanCovarianceBayesianEstimator(BayesianParameter<Matrix,MultivariateGaussian,NormalInverseWishartDistribution> parameter)
Creates a new instance
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
InverseWishartDistribution.inverseScale
Inverse scale matrix, must be symmetric and positive definite.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
MultivariateGaussian.getCovariance()
Gets the covariance matrix of the Gaussian.
|
Matrix |
MultivariateGaussian.SufficientStatistic.getCovariance()
Gets the covariance of the Gaussian.
|
Matrix |
MultivariateStudentTDistribution.getCovariance()
Computes the covariance of the distribution, which involves inverting
the precision matrix.
|
Matrix |
MultivariateGaussian.getCovarianceInverse()
Gets the inverse of the covariance matrix.
|
Matrix |
MultivariateGaussian.SufficientStatisticCovarianceInverse.getCovarianceInverse()
Gets the covariance Inverse of the Gaussian.
|
Matrix |
InverseWishartDistribution.getInverseScale()
Getter for inverseScale
|
Matrix |
InverseWishartDistribution.getMean() |
Matrix |
NormalInverseWishartDistribution.getMean() |
Matrix |
MultivariateStudentTDistribution.getPrecision()
Getter for precision
|
Matrix |
InverseWishartDistribution.getScaleSqrt()
Getter for scaleSqrt
|
Matrix |
MultivariateGaussian.SufficientStatistic.getSumSquaredDifferences()
Getter for sumSquaredDifferences
|
Matrix |
MultivariateGaussian.SufficientStatisticCovarianceInverse.getSumSquaredDifferencesInverse()
Getter for sumSquaredDifferences
|
static Matrix |
InverseWishartDistribution.sample(java.util.Random random,
Vector mean,
Matrix covarianceSqrt,
int degreesOfFreedom)
Creates a single sample covariance matrix inverse from the given
parameters.
|
Modifier and Type | Method and Description |
---|---|
java.lang.Double |
InverseWishartDistribution.PDF.evaluate(Matrix input) |
java.lang.Double |
NormalInverseWishartDistribution.PDF.evaluate(Matrix input) |
double |
InverseWishartDistribution.PDF.logEvaluate(Matrix input) |
double |
NormalInverseWishartDistribution.PDF.logEvaluate(Matrix input) |
static Matrix |
InverseWishartDistribution.sample(java.util.Random random,
Vector mean,
Matrix covarianceSqrt,
int degreesOfFreedom)
Creates a single sample covariance matrix inverse from the given
parameters.
|
static Vector |
MultivariateGaussian.sample(Vector mean,
Matrix covarianceSquareRoot,
java.util.Random random)
Returns a single draw from the Gaussian with the given mean and
covariance.
|
static java.util.ArrayList<Vector> |
MultivariateGaussian.sample(Vector mean,
Matrix covarianceSquareRoot,
java.util.Random random,
int sampleCount)
Returns a collection of draws this Gaussian with the given mean and
covariance.
|
static void |
MultivariateGaussian.sampleInto(Vector mean,
Matrix covarianceSquareRoot,
java.util.Random random,
int sampleCount,
java.util.Collection<? super Vector> output)
Performs a collection of draws this Gaussian with the given mean and
covariance.
|
MultivariateGaussian |
MultivariateGaussian.scale(Matrix premultiplyMatrix)
Scales the MultivariateGaussian by premultiplying by the given Matrix
|
void |
MultivariateGaussian.setCovariance(Matrix covariance)
Sets the covariance matrix.
|
void |
MultivariateGaussian.setCovariance(Matrix covariance,
double symmetryTolerance)
Sets the covariance matrix.
|
void |
MultivariateGaussian.setCovarianceInverse(Matrix covarianceInverse)
Sets the covariance inverse
|
void |
MultivariateGaussian.setCovarianceInverse(Matrix covarianceInverse,
double symmetryTolerance)
Sets the covariance inverse
|
void |
InverseWishartDistribution.setInverseScale(Matrix inverseScale)
Setter for inverseScale
|
void |
MultivariateStudentTDistribution.setPrecision(Matrix precision)
Setter for precision
|
void |
MultivariateStudentTDistribution.PDF.setPrecision(Matrix precision) |
Modifier and Type | Method and Description |
---|---|
void |
InverseWishartDistribution.sampleInto(java.util.Random random,
int sampleCount,
java.util.Collection<? super Matrix> output) |
void |
NormalInverseWishartDistribution.sampleInto(java.util.Random random,
int sampleCount,
java.util.Collection<? super Matrix> output) |
Constructor and Description |
---|
InverseWishartDistribution(Matrix inverseScale,
int degreesOfFreedom)
Creates a new instance of InverseWishartDistribution
|
MultivariateGaussian(Vector mean,
Matrix covariance)
Creates a new instance of MultivariateGaussian.
|
MultivariateStudentTDistribution(double degreesOfFreedom,
Vector mean,
Matrix precision)
Creates a distribution with the given dimensionality.
|
PDF(double degreesOfFreedom,
Vector mean,
Matrix precision)
Creates a distribution with the given dimensionality.
|
PDF(Matrix inverseScale,
int degreesOfFreedom)
Creates a new instance of InverseWishartDistribution
|
PDF(Vector mean,
Matrix covariance)
Creates a new instance of MultivariateGaussian.
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
HolmCorrection.Statistic.adjustedAlphas
Matrix of adjusted alphas (p-value thresholds) for each comparison
|
protected Matrix |
ShafferStaticCorrection.Statistic.adjustedAlphas
Matrix of adjusted alphas (p-value thresholds) for each comparison
|
protected Matrix |
AbstractMultipleHypothesisComparison.Statistic.nullHypothesisProbabilities
Null Hypothesis probability associated with the (i,j)
treatment comparison
|
protected Matrix |
TukeyKramerConfidence.Statistic.standardErrors
Gets the standard errors in the experiment
|
protected Matrix |
AbstractMultipleHypothesisComparison.Statistic.testStatistics
Test statistic associated with the (i,j) treatment comparison
|
Modifier and Type | Method and Description |
---|---|
protected Matrix |
TukeyKramerConfidence.Statistic.computeNullHypothesisProbabilities(java.util.ArrayList<java.lang.Integer> subjectCounts,
Matrix Z)
Computes null-hypothesis probability for the (i,j) treatment comparison
|
protected Matrix |
NemenyiConfidence.Statistic.computeNullHypothesisProbabilities(int subjectCount,
Matrix Z)
Computes null-hypothesis probability for the (i,j) treatment comparison
|
Matrix |
TukeyKramerConfidence.Statistic.computeTestStatistics(java.util.ArrayList<java.lang.Integer> subjectCounts,
java.util.ArrayList<java.lang.Double> treatmentMeans,
double meanSquaredResiduals)
Computes the test statistic for all treatments
|
Matrix |
NemenyiConfidence.Statistic.computeTestStatistics(int subjectCount,
java.util.ArrayList<java.lang.Double> treatmentRankMeans,
double standardError)
Computes the test statistic for all treatments
|
Matrix |
TukeyKramerConfidence.Statistic.getStandardErrors()
Getter for standardErrors
|
Modifier and Type | Method and Description |
---|---|
protected Matrix |
TukeyKramerConfidence.Statistic.computeNullHypothesisProbabilities(java.util.ArrayList<java.lang.Integer> subjectCounts,
Matrix Z)
Computes null-hypothesis probability for the (i,j) treatment comparison
|
protected Matrix |
NemenyiConfidence.Statistic.computeNullHypothesisProbabilities(int subjectCount,
Matrix Z)
Computes null-hypothesis probability for the (i,j) treatment comparison
|
Modifier and Type | Field and Description |
---|---|
protected Matrix |
MatrixBasedTermSimilarityNetwork.similarities
The similarities between terms.
|
Modifier and Type | Field and Description |
---|---|
protected MatrixFactory<? extends Matrix> |
TermVectorSimilarityNetworkCreator.matrixFactory
The matrix factory to create the matrix that backs the similarity
network.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
MatrixBasedTermSimilarityNetwork.getSimilarities()
Gets the similarities between terms.
|
Modifier and Type | Method and Description |
---|---|
MatrixFactory<? extends Matrix> |
TermVectorSimilarityNetworkCreator.getMatrixFactory()
Gets the matrix factory to create the matrix that backs the similarity
network.
|
Modifier and Type | Method and Description |
---|---|
protected void |
MatrixBasedTermSimilarityNetwork.setSimilarities(Matrix similarities)
Gets the similarities between terms.
|
Modifier and Type | Method and Description |
---|---|
void |
TermVectorSimilarityNetworkCreator.setMatrixFactory(MatrixFactory<? extends Matrix> matrixFactory)
Sets the matrix factory to create the matrix that backs the similarity
network.
|
Constructor and Description |
---|
MatrixBasedTermSimilarityNetwork(TermIndex termIndex,
Matrix similarities)
Creates a new
MatrixBasedTermSimilarityNetwork . |
Constructor and Description |
---|
TermVectorSimilarityNetworkCreator(SimilarityFunction<? super Vector,? super Vector> similarityFunction,
double effectiveZero,
MatrixFactory<? extends Matrix> matrixFactory)
Creates a new
TermVectorSimilarityNetworkCreator . |
Modifier and Type | Field and Description |
---|---|
protected Matrix |
ProbabilisticLatentSemanticAnalysis.documentsByTerms
The document-by-term matrix.
|
protected Matrix |
LatentSemanticAnalysis.Transform.singularValues
The diagonal matrix of singular values.
|
protected Matrix |
LatentSemanticAnalysis.Transform.termBasis
The matrix of orthogonal term column vectors.
|
protected Matrix |
LatentSemanticAnalysis.Transform.transform
The cached transform matrix.
|
Modifier and Type | Field and Description |
---|---|
protected MatrixFactory<? extends Matrix> |
ProbabilisticLatentSemanticAnalysis.matrixFactory
The matrix factory.
|
Modifier and Type | Method and Description |
---|---|
Matrix |
LatentSemanticAnalysis.Transform.getSingularValues()
Gets the diagonal matrix of singular values.
|
Matrix |
LatentSemanticAnalysis.Transform.getTermBasis()
Gets the matrix of orthogonal term column vectors.
|
Matrix |
LatentSemanticAnalysis.Transform.getTransform()
Gets the cached transform matrix.
|
Modifier and Type | Method and Description |
---|---|
MatrixFactory<? extends Matrix> |
ProbabilisticLatentSemanticAnalysis.getMatrixFactory()
Gets the matrix factory to use.
|
Modifier and Type | Method and Description |
---|---|
protected void |
LatentSemanticAnalysis.Transform.setSingularValues(Matrix singularValues)
Sets the diagonal matrix of singular values.
|
protected void |
LatentSemanticAnalysis.Transform.setTermBasis(Matrix termBasis)
Sets the matrix of orthogonal term column vectors.
|
protected void |
LatentSemanticAnalysis.Transform.setTransform(Matrix transform)
Gets the cached transform matrix.
|
protected double |
ProbabilisticLatentSemanticAnalysis.Result.step(Vector query,
Matrix pLatentGivenQueryTerm,
Vector pQueryGivenLatent)
Take a step of the expectation-maximization algorithm for computing
the probability of the query given each latent variable.
|
Modifier and Type | Method and Description |
---|---|
void |
ProbabilisticLatentSemanticAnalysis.setMatrixFactory(MatrixFactory<? extends Matrix> matrixFactory)
Sets the matrix factory to use.
|
Constructor and Description |
---|
Transform(Matrix termBasis,
Matrix singularValues)
Create a new
Transform |