Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
gov.sandia.cognition.math.matrix.mtj |
Provides a linear algebra package implementation wrapper using the Matrix
Toolkits for Java (MTJ) library.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Class and Description |
---|---|
class |
DirectionalVectorToDifferentiableScalarFunction
Creates a truly differentiable scalar function from a differentiable Vector
function, instead of using a forward-differences approximation to the
derivative like DirectionalVectorToScalarFunction does.
|
class |
DirectionalVectorToScalarFunction
Maps a vector function onto a scalar one by using a
directional vector and vector offset, and the parameter to the
function is a scalar value along the direction from the start-point
offset.
|
class |
LineMinimizerDerivativeBased.InternalFunction
Internal function used to map/remap/unmap the search direction.
|
Modifier and Type | Class and Description |
---|---|
class |
SolverFunction
Evaluator that allows RootFinders to solve for nonzero values by setting
a "target" parameter.
|
Modifier and Type | Class and Description |
---|---|
class |
StandardDistributionNormalizer
The
StandardDistributionNormalizer class implements a normalization
method where a real value is converted onto a standard distribution. |
Modifier and Type | Interface and Description |
---|---|
static interface |
PolynomialFunction.ClosedForm
Describes functionality of a closed-form algebraic polynomial function
|
Modifier and Type | Class and Description |
---|---|
class |
AtanFunction
Returns the element-wise arctangent of the input vector, compressed between
-maxMagnitude and maxMagnitude (instead of just -PI/2 and PI/2)
|
class |
CosineFunction
A closed-form cosine function.
|
class |
HardSigmoidFunction
A hard sigmoid function, which is an approximation of a logistic sigmoid
whose output is between 0 and 1.
|
class |
HardTanHFunction
A hard sigmoid function, which is an approximation of a tanh sigmoid
whose output is between -1 and 1.
|
class |
IdentityScalarFunction
A univariate scalar identity function: f(x) = x.
|
class |
LeakyRectifiedLinearFunction
A leaky rectified linear unit.
|
class |
LinearFunction
This function acts as a simple linear function of the form f(x) = m*x + b.
|
class |
PolynomialFunction
A single polynomial term specified by a real-valued exponent.
|
static class |
PolynomialFunction.Cubic
Algebraic treatment for a polynomial of the form
y(x) = q0 + q1*x + q2*x^2 + q3*x^3
|
static class |
PolynomialFunction.Linear
Utilities for algebraic treatment of a linear polynomial of the form
y(x) = q0 + q1*x
|
static class |
PolynomialFunction.Quadratic
Utilities for algebraic treatment of a quadratic polynomial of the form
y(x) = q0 + q1*x + q2*x^2.
|
class |
RectifiedLinearFunction
A rectified linear unit, which is the maximum of its input or 0.
|
class |
SigmoidFunction
An implementation of a sigmoid squashing function.
|
class |
SoftPlusFunction
A smoothed approximation for rectified linear unit.
|
class |
TanHFunction
The hyperbolic tangent (tanh) function.
|
class |
ThresholdFunction
Maps the input space onto the set {LOW_VALUE,HIGH_VALUE}.
|
Modifier and Type | Method and Description |
---|---|
UnivariateScalarFunction |
ElementWiseVectorFunction.getScalarFunction()
Getter for scalarFunction
|
Modifier and Type | Method and Description |
---|---|
static Vector |
ElementWiseVectorFunction.evaluate(Vector input,
UnivariateScalarFunction function)
Applies the scalar function to each element of the input Vector
independently of all others, returning a Vector of equal dimension as
the input
|
void |
ElementWiseDifferentiableVectorFunction.setScalarFunction(UnivariateScalarFunction scalarFunction) |
void |
ElementWiseVectorFunction.setScalarFunction(UnivariateScalarFunction scalarFunction)
Setter for scalarFunction
|
Constructor and Description |
---|
ElementWiseVectorFunction(UnivariateScalarFunction scalarFunction)
Creates a new instance of ElementWiseVectorFunction
|
FeedforwardNeuralNetwork(int numInputs,
int numHiddens,
int numOutputs,
UnivariateScalarFunction activationFunction)
Creates a new instance of FeedforwardNeuralNetwork
|
GeneralizedLinearModel(int numInputs,
int numOutputs,
UnivariateScalarFunction scalarFunction)
Creates a new instance of GeneralizedLinearModel
|
GeneralizedLinearModel(MultivariateDiscriminant matrixMultiply,
UnivariateScalarFunction scalarSquashingFunction)
Creates a new instance of GeneralizedLinearModel
|
Constructor and Description |
---|
FeedforwardNeuralNetwork(java.util.ArrayList<java.lang.Integer> nodesPerLayer,
java.util.ArrayList<? extends UnivariateScalarFunction> layerActivationFunctions)
Creates a new instance of FeedforwardNeuralNetwork
|
Modifier and Type | Interface and Description |
---|---|
interface |
DifferentiableUnivariateScalarFunction
A differentiable univariate scalar function
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDifferentiableUnivariateScalarFunction
Partial implementation of DifferentiableUnivariateScalarFunction that
implements the differentiate(Double) method with a callback to the
differentiate(double) method, so that a concrete class only to implement
the differentiate(double) method
|
class |
AbstractUnivariateScalarFunction
Abstract implementation of ScalarFunction where the evaluate(Double) method
calls back into the evaluate(double) method.
|
Modifier and Type | Method and Description |
---|---|
Vector |
AbstractVector.transform(UnivariateScalarFunction function) |
Vector |
Vector.transform(UnivariateScalarFunction function)
Applies the given function to each of the elements of this vector and
returns a new vector with the result.
|
void |
AbstractVector.transformEquals(UnivariateScalarFunction function) |
void |
Vector.transformEquals(UnivariateScalarFunction function)
Applies the given function to each of the elements of this vector and
sets them to the result.
|
Vector |
AbstractVector.transformNonZeros(UnivariateScalarFunction function) |
Vector |
Vector.transformNonZeros(UnivariateScalarFunction function)
Applies the given function to each of the non-zero elements of this
vector and returns a new vector with the result.
|
void |
AbstractVector.transformNonZerosEquals(UnivariateScalarFunction function) |
void |
Vector.transformNonZerosEquals(UnivariateScalarFunction function)
Applies the given function to each of the non-zero elements of this
vector and sets them to the result.
|
Modifier and Type | Method and Description |
---|---|
void |
DenseVector.transformEquals(UnivariateScalarFunction function) |
void |
DenseVector.transformNonZerosEquals(UnivariateScalarFunction function) |
void |
SparseVector.transformNonZerosEquals(UnivariateScalarFunction function) |
Modifier and Type | Interface and Description |
---|---|
interface |
SmoothCumulativeDistributionFunction
This defines a CDF that has an associated derivative, which is its PDF.
|
interface |
UnivariateProbabilityDensityFunction
A PDF that takes doubles as input.
|
Modifier and Type | Class and Description |
---|---|
class |
AdaptiveRejectionSampling.AbstractEnvelope
Describes an enveloping function comprised of a sorted sequence of lines
|
static class |
AdaptiveRejectionSampling.LineSegment
A line that has a minimum and maximum support (x-axis) value.
|
static class |
AdaptiveRejectionSampling.LogEvaluator<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Wraps an Evaluator and takes the natural logarithm of the evaluate method
|
class |
AdaptiveRejectionSampling.LowerEnvelope
Define the lower envelope for Adaptive Rejection Sampling
|
static class |
AdaptiveRejectionSampling.PDFLogEvaluator
Wraps a PDF so that it returns the logEvaluate method.
|
class |
AdaptiveRejectionSampling.UpperEnvelope
Constructs the upper envelope for sampling.
|
Modifier and Type | Class and Description |
---|---|
static class |
BetaDistribution.CDF
CDF of the Beta-family distribution
|
static class |
BetaDistribution.PDF
Beta distribution probability density function
|
static class |
CauchyDistribution.CDF
CDF of the CauchyDistribution.
|
static class |
CauchyDistribution.PDF
PDF of the CauchyDistribution.
|
static class |
ChiSquareDistribution.CDF
Cumulative Distribution Function (CDF) of a Chi-Square Distribution
|
static class |
ChiSquareDistribution.PDF
PDF of the Chi-Square distribution
|
static class |
DeterministicDistribution.CDF
CDF of the deterministic distribution.
|
static class |
ExponentialDistribution.CDF
CDF of the ExponentialDistribution.
|
static class |
ExponentialDistribution.PDF
PDF of the ExponentialDistribution.
|
static class |
GammaDistribution.CDF
CDF of the Gamma distribution
|
static class |
GammaDistribution.PDF
Closed-form PDF of the Gamma distribution
|
static class |
InverseGammaDistribution.CDF
CDF of the inverseRootFinder-gamma distribution.
|
static class |
InverseGammaDistribution.PDF
PDF of the inverseRootFinder-Gamma distribution.
|
static class |
LaplaceDistribution.CDF
CDF of the Laplace distribution.
|
static class |
LaplaceDistribution.PDF
The PDF of a Laplace Distribution.
|
static class |
LogisticDistribution.CDF
CDF of the LogisticDistribution
|
static class |
LogisticDistribution.PDF
PDF of the LogisticDistribution
|
static class |
LogNormalDistribution.CDF
CDF of the Log-Normal Distribution
|
static class |
LogNormalDistribution.PDF
PDF of a Log-normal distribution
|
static class |
ParetoDistribution.CDF
CDF of the Pareto Distribution.
|
static class |
ParetoDistribution.PDF
PDF of the ParetoDistribution
|
static class |
ScalarMixtureDensityModel.CDF
CDFof the SMDM
|
static class |
ScalarMixtureDensityModel.PDF
PDF of the SMDM
|
static class |
SnedecorFDistribution.CDF
CDF of the F-distribution.
|
static class |
StudentTDistribution.CDF
Evaluator that computes the Cumulative Distribution Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
|
static class |
StudentTDistribution.PDF
Evaluator that computes the Probability Density Function (CDF) of
a Student-t distribution with a fixed number of degrees of freedom
|
static class |
UniformDistribution.CDF
Cumulative Distribution Function of a uniform
|
static class |
UniformDistribution.PDF
Probability density function of a Uniform Distribution
|
static class |
UnivariateGaussian.CDF
CDF of the underlying Gaussian.
|
static class |
UnivariateGaussian.CDF.Inverse
Inverts the CumulativeDistribution function.
|
static class |
UnivariateGaussian.ErrorFunction
Gaussian Error Function, useful for computing the cumulative distribution
function for a Gaussian.
|
static class |
UnivariateGaussian.ErrorFunction.Inverse
Inverse of the ErrorFunction
|
static class |
UnivariateGaussian.PDF
PDF of the underlying Gaussian.
|
static class |
WeibullDistribution.CDF
CDF of the Weibull distribution
|
static class |
WeibullDistribution.PDF
PDF of the Weibull distribution
|