| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm | 
 Provides general interfaces for learning algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.annealing | 
 Provides the Simulated Annealing algorithm. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering | 
 Provides clustering algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.ensemble | 
 Provides ensemble methods. 
 | 
| gov.sandia.cognition.learning.algorithm.factor.machine | 
 Provides factorization machine algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.genetic | 
 Provides a genetic algorithm implementation. 
 | 
| gov.sandia.cognition.learning.algorithm.hmm | 
 Provides hidden Markov model (HMM) algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.minimization | 
 Provides minimization algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.minimization.line | 
 Provides line (scalar) minimization algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.pca | 
 Provides implementations of Principle Components Analysis (PCA). 
 | 
| gov.sandia.cognition.learning.algorithm.perceptron | 
 Provides the Perceptron algorithm and some of its variations. 
 | 
| gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
| gov.sandia.cognition.learning.algorithm.regression | 
 Provides regression algorithms, such as Linear Regression. 
 | 
| gov.sandia.cognition.learning.algorithm.root | 
 Provides algorithms for finding the roots, or zero crossings, of scalar functions. 
 | 
| gov.sandia.cognition.learning.algorithm.svm | 
 Provides implementations of Support Vector Machine (SVM) learning algorithms. 
 | 
| gov.sandia.cognition.learning.function.vector | 
 Provides functions that output vectors. 
 | 
| gov.sandia.cognition.statistics.bayesian | 
 Provides algorithms for computing Bayesian estimates of parameters. 
 | 
| gov.sandia.cognition.statistics.distribution | 
 Provides statistical distributions. 
 | 
| gov.sandia.cognition.text.topic | 
 Provides topic modeling algorithms. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractAnytimeBatchLearner<DataType,ResultType>
The  
AbstractAnytimeBatchLearner abstract class 
 implements a standard method for conforming to the BatchLearner and
 AnytimeLearner (IterativeAlgorithm and 
 StoppableAlgorithm) interfaces. | 
class  | 
AbstractAnytimeSupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The  
AbstractAnytimeSupervisedBatchLearner abstract class extends
 the AbstractAnytimeBatchLearner to implement the 
 SupervisedBatchLearner interface. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
 using the provided cost function and perturbation function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AffinityPropagation<DataType>
The  
AffinityPropagation algorithm requires three parameters:
 a divergence function, a value to use for self-divergence, and a damping
 factor (called lambda in the paper; 0.5 is the default). | 
class  | 
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
AgglomerativeClusterer implements an agglomerative clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
class  | 
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The  
DBSCAN algorithm requires three parameters: a distance
 metric, a value for neighborhood radius, and a value for the minimum number
 of surrounding neighbors for a point to be considered non-noise. | 
class  | 
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model. 
 | 
class  | 
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
KMeansClusterer class implements the standard k-means
 (k-centroids) clustering algorithm. | 
class  | 
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
 not have sufficient membership to pass a simple statistical significance
 test. 
 | 
class  | 
MiniBatchKMeansClusterer<DataType extends Vector>
Approximates k-means clustering by working on random subsets of the
 data. 
 | 
class  | 
OptimizedKMeansClusterer<DataType>
This class implements an optimized version of the k-means algorithm that
 makes use of the triangle inequality to compute the same answer as k-means
 while using less distance calculations. 
 | 
class  | 
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm. 
 | 
class  | 
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
PartitionalClusterer implements a partitional clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
BagBasedCategorizerEnsembleLearner<InputType,CategoryType>
Interface for a bag-based ensemble learner. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractBaggingLearner<InputType,OutputType,MemberType,EnsembleType extends Evaluator<? super InputType,? extends OutputType>>
Learns an ensemble by randomly sampling with replacement
 (duplicates allowed) some percentage of the size of the data (defaults to
 100%) on each iteration to train a new ensemble member. 
 | 
class  | 
AdaBoost<InputType>
The  
AdaBoost class implements the Adaptive Boosting (AdaBoost)
 algorithm formulated by Yoav Freund and Robert Shapire. | 
class  | 
BaggingCategorizerLearner<InputType,CategoryType>
Learns an categorization ensemble by randomly sampling with replacement
 (duplicates allowed) some percentage of the size of the data (defaults to
 100%) on each iteration to train a new ensemble member. 
 | 
class  | 
BaggingRegressionLearner<InputType>
Learns an ensemble for regression by randomly sampling with replacement
 (duplicates allowed) some percentage of the size of the data (defaults to
 100%) on each iteration to train a new ensemble member. 
 | 
class  | 
BinaryBaggingLearner<InputType>
The  
BinaryBaggingLearner implements the Bagging learning algorithm. | 
class  | 
CategoryBalancedBaggingLearner<InputType,CategoryType>
An extension of the basic bagging learner that attempts to sample bags that
 have equal numbers of examples from every category. 
 | 
class  | 
CategoryBalancedIVotingLearner<InputType,CategoryType>
An extension of IVoting for dealing with skew problems that makes sure that
 there are an equal number of examples from each category in each sample that
 an ensemble member is trained on. 
 | 
class  | 
IVotingCategorizerLearner<InputType,CategoryType>
Learns an ensemble in a method similar to bagging except that on each
 iteration the bag is built from two parts, each sampled from elements from
 disjoint sets. 
 | 
class  | 
MultiCategoryAdaBoost<InputType,CategoryType>
An implementation of a multi-class version of the Adaptive Boosting
 (AdaBoost) algorithm, known as AdaBoost.M1. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractFactorizationMachineLearner
An abstract class for learning  
FactorizationMachines. | 
class  | 
FactorizationMachineAlternatingLeastSquares
Implements an Alternating Least Squares (ALS) algorithm for learning a 
 Factorization Machine. 
 | 
class  | 
FactorizationMachineStochasticGradient
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
 Factorization Machine. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
 that uses a given cost function to minimize and a given reproduction 
 function for generating the population. 
 | 
class  | 
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractBaumWelchAlgorithm<ObservationType,DataType>
Partial implementation of the Baum-Welch algorithm. 
 | 
class  | 
BaumWelchAlgorithm<ObservationType>
Implements the Baum-Welch algorithm, also known as the "forward-backward
 algorithm", the expectation-maximization algorithm, etc for
 Hidden Markov Models (HMMs). 
 | 
class  | 
ParallelBaumWelchAlgorithm<ObservationType>
A Parallelized implementation of some of the methods of the
 Baum-Welch Algorithm. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractAnytimeFunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A partial implementation of a minimization algorithm that is iterative,
 stoppable, and approximate. 
 | 
class  | 
FunctionMinimizerBFGS
Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
 nonlinear minimization algorithm. 
 | 
class  | 
FunctionMinimizerConjugateGradient
Conjugate gradient method is a class of algorithms for finding the
 unconstrained local minimum of a nonlinear function. 
 | 
class  | 
FunctionMinimizerDFP
Implementation of the Davidon-Fletcher-Powell (DFP) formula for a
 Quasi-Newton minimization update. 
 | 
class  | 
FunctionMinimizerDirectionSetPowell
Implementation of the derivative-free unconstrained nonlinear direction-set
 minimization algorithm called "Powell's Method" by Numerical Recipes. 
 | 
class  | 
FunctionMinimizerFletcherReeves
This is an implementation of the Fletcher-Reeves conjugate gradient
 minimization procedure. 
 | 
class  | 
FunctionMinimizerGradientDescent
This is an implementation of the classic Gradient Descent algorithm, also
 known as Steepest Descent, Backpropagation (for neural nets), or Hill 
 Climbing. 
 | 
class  | 
FunctionMinimizerLiuStorey
This is an implementation of the Liu-Storey conjugate gradient
 minimization procedure. 
 | 
class  | 
FunctionMinimizerNelderMead
Implementation of the Downhill Simplex minimization algorithm, also known as
 the Nelder-Mead method. 
 | 
class  | 
FunctionMinimizerPolakRibiere
This is an implementation of the Polack-Ribiere conjugate gradient
 minimization procedure. 
 | 
class  | 
FunctionMinimizerQuasiNewton
This is an abstract implementation of the Quasi-Newton minimization method,
 sometimes called "Variable-Metric methods."
 This family of minimization algorithms uses first-order gradient information
 to find a locally minimum to a scalar function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractAnytimeLineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial AnytimeAlgorithm implementation of a LineMinimizer. 
 | 
class  | 
LineMinimizerBacktracking
Implementation of the backtracking line-minimization algorithm. 
 | 
class  | 
LineMinimizerDerivativeBased
This is an implementation of a line-minimization algorithm proposed by
 Fletcher that makes extensive use of first-order derivative information. 
 | 
class  | 
LineMinimizerDerivativeFree
This is an implementation of a LineMinimizer that does not require 
 derivative information. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GeneralizedHebbianAlgorithm
Implementation of the Generalized Hebbian Algorithm, also known as
 Sanger's Rule, which is a generalization of Oja's Rule. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
BatchMultiPerceptron<CategoryType>
Implements a multi-class version of the standard batch Perceptron learning
 algorithm. 
 | 
class  | 
Perceptron
The  
Perceptron class implements the standard Perceptron learning 
 algorithm that learns a binary classifier based on vector input. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
KernelAdatron<InputType>
The  
KernelAdatron class implements an online version of the Support
 Vector Machine learning algorithm. | 
class  | 
KernelPerceptron<InputType>
The  
KernelPerceptron class implements the kernel version of 
 the Perceptron algorithm. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractLogisticRegression<InputType,OutputType,FunctionType extends Evaluator<? super InputType,OutputType>>
Abstract partial implementation for logistic regression classes. 
 | 
class  | 
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer. 
 | 
class  | 
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
 parameters. 
 | 
class  | 
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure. 
 | 
class  | 
KernelBasedIterativeRegression<InputType>
The  
KernelBasedIterativeRegression class implements an online version of
 the Support Vector Regression algorithm. | 
class  | 
KernelWeightedRobustRegression<InputType,OutputType>
KernelWeightedRobustRegression takes a supervised learning algorithm that 
 operates on a weighted collection of InputOutputPairs and modifies the 
 weight of a sample based on the dataset output and its corresponding 
 estimate from the Evaluator from the supervised learning algorithm at each 
 iteration. 
 | 
class  | 
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators. 
 | 
class  | 
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
 Levenberg-Marquardt Estimation (or LMA). 
 | 
class  | 
LogisticRegression
Performs Logistic Regression by means of the iterative reweighted least
 squares (IRLS) algorithm, where the logistic function has an explicit bias
 term, and a diagonal L2 regularization term. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractBracketedRootFinder
Partial implementation of RootFinder that maintains a bracket on the root. 
 | 
class  | 
AbstractRootFinder
Partial implementation of RootFinder. 
 | 
class  | 
RootBracketExpander
The root-bracketing expansion algorithm. 
 | 
class  | 
RootFinderBisectionMethod
Bisection algorithm for root finding. 
 | 
class  | 
RootFinderFalsePositionMethod
The false-position algorithm for root finding. 
 | 
class  | 
RootFinderNewtonsMethod
Newton's method, sometimes called Newton-Raphson method, uses first-order
 derivative information to iteratively locate a root. 
 | 
class  | 
RootFinderRiddersMethod
The root-finding algorithm due to Ridders. 
 | 
class  | 
RootFinderSecantMethod
The secant algorithm for root finding. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
PrimalEstimatedSubGradient
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
 algorithm for learning a linear support vector machine (SVM). 
 | 
class  | 
SequentialMinimalOptimization<InputType>
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
 training a Support Vector Machine (SVM), which is a kernel-based binary
 categorizer. 
 | 
class  | 
SuccessiveOverrelaxation<InputType>
The  
SuccessiveOverrelaxation class implements the Successive 
 Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM). | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
GaussianContextRecognizer.Learner
Creates a GaussianContextRecognizer from a Dataset[Vector] using
 a BatchClusterer 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType>
Partial abstract implementation of MarkovChainMonteCarlo. 
 | 
class  | 
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
 number of clusters and the centroids of the clusters from a set of
 data. 
 | 
class  | 
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
 most general formulation of MCMC but can be slow. 
 | 
class  | 
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner. 
 | 
static class  | 
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
LatentDirichletAllocationVectorGibbsSampler
A Gibbs sampler for performing Latent Dirichlet Allocation (LDA). 
 | 
class  | 
ParallelLatentDirichletAllocationVectorGibbsSampler
A parallel implementation of  
LatentDirichletAllocationVectorGibbsSampler. | 
class  | 
ProbabilisticLatentSemanticAnalysis
An implementation of the Probabilistic Latent Semantic Analysis (PLSA)
 algorithm. 
 |