InputType - The input type for supervised learning. Passed on to the internal
learning algorithm. Also the input type for the learned ensemble.@PublicationReference(title="Bagging Predictors", author="Leo Breiman", year=1996, type=Journal, publication="Machine Learning", pages={123,140}, url="http://www.springerlink.com/index/L4780124W2874025.pdf") public class BaggingRegressionLearner<InputType> extends AbstractBaggingLearner<InputType,java.lang.Double,Evaluator<? super InputType,? extends java.lang.Number>,AveragingEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Number>>>
BaggingCategorizerLearner,
Serialized Formbag, dataInBag, dataList, DEFAULT_MAX_ITERATIONS, DEFAULT_PERCENT_TO_SAMPLE, ensemble, learner, percentToSample, randomdata, keepGoingmaxIterationsDEFAULT_ITERATION, iteration| Constructor and Description |
|---|
BaggingRegressionLearner()
Creates a new, empty
BaggingRegressionLearner. |
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner)
Creates a new instance of BaggingRegressionLearner.
|
BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BaggingRegressionLearner.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
addEnsembleMember(Evaluator<? super InputType,? extends java.lang.Number> member)
Adds a new member to the ensemble.
|
protected AveragingEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Number>> |
createInitialEnsemble()
Create the initial, empty ensemble for the algorithm to use.
|
cleanupAlgorithm, fillBag, getBag, getDataInBag, getDataList, getEnsemble, getLearner, getPercentToSample, getRandom, getResult, initializeAlgorithm, setBag, setDataInBag, setDataList, setEnsemble, setLearner, setPercentToSample, setRandom, stepclone, getData, getKeepGoing, learn, setData, setKeepGoing, stopgetMaxIterations, isResultValid, setMaxIterationsaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getIteration, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnclonegetMaxIterations, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValidpublic BaggingRegressionLearner()
BaggingRegressionLearner.public BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner)
learner - The learner to use to create the categorizer on each iteration.public BaggingRegressionLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>>,? extends Evaluator<? super InputType,? extends java.lang.Number>> learner, int maxIterations, double percentToSample, java.util.Random random)
learner - The learner to use to create the regression function on each iteration.maxIterations - The maximum number of iterations to run for, which is also the
number of learners to create.percentToSample - The percentage of the total size of the data to sample on each
iteration. Must be positive.random - The random number generator to use.protected AveragingEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Number>> createInitialEnsemble()
AbstractBaggingLearnercreateInitialEnsemble in class AbstractBaggingLearner<InputType,java.lang.Double,Evaluator<? super InputType,? extends java.lang.Number>,AveragingEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Number>>>protected void addEnsembleMember(Evaluator<? super InputType,? extends java.lang.Number> member)
AbstractBaggingLearneraddEnsembleMember in class AbstractBaggingLearner<InputType,java.lang.Double,Evaluator<? super InputType,? extends java.lang.Number>,AveragingEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Number>>>member - The new member to add to the ensemble.