InputType - Input class of the Collection<InputOutputPairs>
for the dataset, for example, something like Vector or String@CodeReview(reviewer="Kevin R. Dixon", date="2008-07-23", changesNeeded=false, comments={"Cleaned up javadoc a little bit with code annotations.","Otherwise, looks fine."}) public class BinaryBaggingLearner<InputType> extends AbstractBaggingLearner<InputType,java.lang.Boolean,Evaluator<? super InputType,? extends java.lang.Boolean>,WeightedBinaryEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Boolean>>>
BinaryBaggingLearner implements the Bagging learning algorithm.
At each step, the algorithm creates a "bag" of data by sampling from the
given data with replacement. It then passes the bag of data to the given
learner to learn a new binary categorizer, which it then adds to the
ensemble. All learners are given an equal weight of 1.0.bag, dataInBag, dataList, DEFAULT_MAX_ITERATIONS, DEFAULT_PERCENT_TO_SAMPLE, ensemble, learner, percentToSample, randomdata, keepGoingmaxIterationsDEFAULT_ITERATION, iteration| Constructor and Description |
|---|
BinaryBaggingLearner()
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner,
int maxIterations,
java.util.Random random)
Creates a new instance of BinaryBaggingLearner.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
addEnsembleMember(Evaluator<? super InputType,? extends java.lang.Boolean> member)
Adds a new member to the ensemble.
|
protected WeightedBinaryEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Boolean>> |
createInitialEnsemble()
Create the initial, empty ensemble for the algorithm to use.
|
cleanupAlgorithm, fillBag, getBag, getDataInBag, getDataList, getEnsemble, getLearner, getPercentToSample, getRandom, getResult, initializeAlgorithm, setBag, setDataInBag, setDataList, setEnsemble, setLearner, setPercentToSample, setRandom, stepclone, getData, getKeepGoing, learn, setData, setKeepGoing, stopgetMaxIterations, isResultValid, setMaxIterationsaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getIteration, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnclonegetMaxIterations, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValidpublic BinaryBaggingLearner()
public BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner)
learner - The learner to use to create the categorizer on each iteration.public BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner, int maxIterations)
learner - The learner to use to create the categorizer on each iteration.maxIterations - The maximum number of iterations to run for, which is also the
number of learners to create.public BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner, int maxIterations, java.util.Random random)
learner - The learner to use to create the categorizer on each iteration.maxIterations - The maximum number of iterations to run for, which is also the
number of learners to create.random - The random number generator to use.public BinaryBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Boolean>>,? extends Evaluator<? super InputType,? extends java.lang.Boolean>> learner, int maxIterations, double percentToSample, java.util.Random random)
learner - The learner to use to create the ensemble member on each iteration.maxIterations - The maximum number of iterations to run for, which is also the
number of learners to create.percentToSample - The percentage of the total size of the data to sample on each
iteration. Must be positive.random - The random number generator to use.protected WeightedBinaryEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Boolean>> createInitialEnsemble()
AbstractBaggingLearnercreateInitialEnsemble in class AbstractBaggingLearner<InputType,java.lang.Boolean,Evaluator<? super InputType,? extends java.lang.Boolean>,WeightedBinaryEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Boolean>>>protected void addEnsembleMember(Evaluator<? super InputType,? extends java.lang.Boolean> member)
AbstractBaggingLearneraddEnsembleMember in class AbstractBaggingLearner<InputType,java.lang.Boolean,Evaluator<? super InputType,? extends java.lang.Boolean>,WeightedBinaryEnsemble<InputType,Evaluator<? super InputType,? extends java.lang.Boolean>>>member - The new member to add to the ensemble.