InputType - The input type for supervised learning. Passed on to the internal
learning algorithm. Also the input type for the learned ensemble.CategoryType - The output type for supervised learning. Passed on to the internal
learning algorithm. Also the output type of the learned ensemble.public class CategoryBalancedBaggingLearner<InputType,CategoryType> extends BaggingCategorizerLearner<InputType,CategoryType>
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria<InputType,CategoryType>| Modifier and Type | Field and Description |
|---|---|
protected java.util.ArrayList<CategoryType> |
categoryList
The list of categories.
|
protected java.util.HashMap<CategoryType,java.util.ArrayList<java.lang.Integer>> |
dataPerCategory
The mapping of categories to indices of examples belonging to the category.
|
bag, dataInBag, dataList, DEFAULT_MAX_ITERATIONS, DEFAULT_PERCENT_TO_SAMPLE, ensemble, learner, percentToSample, randomdata, keepGoingmaxIterationsDEFAULT_ITERATION, iteration| Constructor and Description |
|---|
CategoryBalancedBaggingLearner()
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
Creates a new instance of CategoryBalancedBaggingLearner.
|
CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
java.util.Random random)
Creates a new instance of CategoryBalancedBaggingLearner.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
cleanupAlgorithm()
Called to clean up the learning algorithm's state after learning has
finished.
|
protected void |
fillBag(int sampleCount)
Fills the internal bag field by sampling the given number of samples.
|
protected boolean |
initializeAlgorithm()
Called to initialize the learning algorithm's state based on the
data that is stored in the data field.
|
addEnsembleMember, createInitialEnsemble, getDataInBag, getExamplegetBag, getDataList, getEnsemble, getLearner, getPercentToSample, getRandom, getResult, setBag, setDataInBag, setDataList, setEnsemble, setLearner, setPercentToSample, setRandom, stepclone, getData, getKeepGoing, learn, setData, setKeepGoing, stopgetMaxIterations, isResultValid, setMaxIterationsaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getIteration, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetData, getKeepGoinggetMaxIterations, getResult, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValid, stoplearncloneprotected java.util.ArrayList<CategoryType> categoryList
protected java.util.HashMap<CategoryType,java.util.ArrayList<java.lang.Integer>> dataPerCategory
public CategoryBalancedBaggingLearner()
public CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner)
learner - The learner to use to create the categorizer on each iteration.public CategoryBalancedBaggingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner, int maxIterations, double percentToSample, java.util.Random random)
learner - The learner to use to create the categorizer on each iteration.maxIterations - The maximum number of iterations to run for, which is also the
number of learners to create.percentToSample - The percentage of the total size of the data to sample on each
iteration. Must be positive.random - The random number generator to use.protected boolean initializeAlgorithm()
AbstractAnytimeBatchLearnerinitializeAlgorithm in class AbstractBaggingLearner<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>,WeightedVotingCategorizerEnsemble<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>>>protected void fillBag(int sampleCount)
AbstractBaggingLearnerfillBag in class AbstractBaggingLearner<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>,WeightedVotingCategorizerEnsemble<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>>>sampleCount - The number to sample.protected void cleanupAlgorithm()
AbstractAnytimeBatchLearnercleanupAlgorithm in class AbstractBaggingLearner<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>,WeightedVotingCategorizerEnsemble<InputType,CategoryType,Evaluator<? super InputType,? extends CategoryType>>>