@PublicationReference(author="Wikipedia", title="Gauss-Newton algorithm", type=WebPage, year=2009, url="http://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm") public class GaussNewtonAlgorithm extends LeastSquaresEstimator
FletcherXuHybridEstimation,
Serialized Form| Modifier and Type | Field and Description |
|---|---|
static LineMinimizer<?> |
DEFAULT_LINE_MINIMIZER
Default line minimizer, LineMinimizerDerivativeBased.
|
static double |
STEP_MAX
Maximum step norm allowed under a Gauss-Newton step, 100.0
|
DEFAULT_MAX_ITERATIONS, DEFAULT_TOLERANCEdata, keepGoingmaxIterationsDEFAULT_ITERATION, iteration| Constructor and Description |
|---|
GaussNewtonAlgorithm()
Creates a new instance of GaussNewtonAlgorithm
|
GaussNewtonAlgorithm(LineMinimizer<?> lineMinimizer)
Creates a new instance of GaussNewtonAlgorithm
|
GaussNewtonAlgorithm(LineMinimizer<?> lineMinimizer,
int maxIterations,
double tolerance)
Creates a new instance of GaussNewtonAlgorithm
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
cleanupAlgorithm()
Called to clean up the learning algorithm's state after learning has
finished.
|
LineMinimizer<?> |
getLineMinimizer()
Getter for lineMinimizer
|
protected boolean |
initializeAlgorithm()
Called to initialize the learning algorithm's state based on the
data that is stored in the data field.
|
void |
setLineMinimizer(LineMinimizer<?> lineMinimizer)
Setter for lineMinimizer
|
protected boolean |
step()
Called to take a single step of the learning algorithm.
|
getCostFunction, getObjectToOptimize, getPerformance, getResult, getResultCost, getTolerance, setCostFunction, setObjectToOptimize, setResult, setResultCost, setToleranceclone, getData, getKeepGoing, learn, setData, setKeepGoing, stopgetMaxIterations, isResultValid, setMaxIterationsaddIterativeAlgorithmListener, fireAlgorithmEnded, fireAlgorithmStarted, fireStepEnded, fireStepStarted, getIteration, getListeners, removeIterativeAlgorithmListener, setIteration, setListenersequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnclonegetMaxIterations, setMaxIterationsaddIterativeAlgorithmListener, getIteration, removeIterativeAlgorithmListenerisResultValid, stoppublic static final LineMinimizer<?> DEFAULT_LINE_MINIMIZER
public static final double STEP_MAX
public GaussNewtonAlgorithm()
public GaussNewtonAlgorithm(LineMinimizer<?> lineMinimizer)
lineMinimizer - Workhorse algorithm that finds the minimum along a particular directionpublic GaussNewtonAlgorithm(LineMinimizer<?> lineMinimizer, int maxIterations, double tolerance)
lineMinimizer - Workhorse algorithm that finds the minimum along a particular directionmaxIterations - Maximum number of iterationstolerance - Tolerance before stopping.protected boolean initializeAlgorithm()
AbstractAnytimeBatchLearnerinitializeAlgorithm in class AbstractAnytimeBatchLearner<java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>>,GradientDescendable>protected boolean step()
AbstractAnytimeBatchLearnerstep in class AbstractAnytimeBatchLearner<java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>>,GradientDescendable>protected void cleanupAlgorithm()
AbstractAnytimeBatchLearnercleanupAlgorithm in class AbstractAnytimeBatchLearner<java.util.Collection<? extends InputOutputPair<? extends Vector,Vector>>,GradientDescendable>public LineMinimizer<?> getLineMinimizer()
public void setLineMinimizer(LineMinimizer<?> lineMinimizer)
lineMinimizer - Workhorse algorithm that finds the minimum along a particular direction