CostParametersType - The type of parameters that the cost function
takes. For example, a Collection of InputOutputPairs.ResultType - The type of object created by the learning algorithm.
For example, a FeedforwardNeuralNetwork.@CodeReview(reviewer="Kevin R. Dixon",date="2008-07-22",changesNeeded=false,comments={"Moved previous code review to annotation.","Interface looks fine."}) @CodeReview(reviewer="Justin Basilico",date="2006-10-03",changesNeeded=false,comments={"Added some missing documentation.","Interface looks fine."}) public interface BatchCostMinimizationLearner<CostParametersType,ResultType> extends BatchLearner<CostParametersType,ResultType>
BatchCostMinimizationLearner interface defines the functionality
of a cost-minimization learning algorithm should follow.
(These algorithms typically fall into the categories of "supervised" and
"reinforcement" learning algorithms, but I don't like anthropomorphic terms.)
A BatchLearner takes two generics to parameterize it:
LearnableType is the class of thing we're going to minimize and the
second parameter CostFunctionType is a class of CostFunction
that can evaluate the LearnableType.| Modifier and Type | Method and Description |
|---|---|
CostFunction<? super ResultType,? super CostParametersType> |
getCostFunction()
Gets the cost function that the learner is minimizing.
|
ResultType |
learn(CostParametersType minimizationParameters)
Invokes the minimization (learning) call using the given cost function
parameters.
|
cloneResultType learn(CostParametersType minimizationParameters)
learn in interface BatchLearner<CostParametersType,ResultType>minimizationParameters - The parameters for the cost function to
minimize against.CostFunction<? super ResultType,? super CostParametersType> getCostFunction()