| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.annealing | 
 Provides the Simulated Annealing algorithm. 
 | 
| gov.sandia.cognition.learning.algorithm.genetic | 
 Provides a genetic algorithm implementation. 
 | 
| gov.sandia.cognition.learning.algorithm.regression | 
 Provides regression algorithms, such as Linear Regression. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
 using the provided cost function and perturbation function. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
 that uses a given cost function to minimize and a given reproduction 
 function for generating the population. 
 | 
class  | 
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
 parameters of an object. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
 from the minimization package. 
 | 
class  | 
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer. 
 | 
class  | 
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
 parameters. 
 | 
class  | 
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure. 
 | 
class  | 
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators. 
 | 
class  | 
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
 Levenberg-Marquardt Estimation (or LMA). 
 | 
class  | 
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
 minimization algorithm. 
 | 
class  | 
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
 the "minimization" package to the task of estimating locally optimal
 (minimum-cost) parameter sets. 
 |