Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.montecarlo |
Provides Monte Carlo procedures for numerical integration and sampling.
|
gov.sandia.cognition.util |
Provides general utility classes.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.List<WeightedValue<MemberType>> |
AbstractWeightedEnsemble.members
The members of the ensemble.
|
protected java.util.List<WeightedValue<MemberType>> |
WeightedBinaryEnsemble.members
The members of the ensemble.
|
protected java.util.List<WeightedValue<MemberType>> |
WeightedVotingCategorizerEnsemble.members
The members of the ensemble.
|
Modifier and Type | Method and Description |
---|---|
java.util.List<WeightedValue<MemberType>> |
AbstractWeightedEnsemble.getMembers()
Gets the members of the ensemble.
|
java.util.List<WeightedValue<MemberType>> |
WeightedBinaryEnsemble.getMembers()
Gets the members of the ensemble.
|
java.util.List<WeightedValue<MemberType>> |
WeightedVotingCategorizerEnsemble.getMembers()
Gets the members of the ensemble.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractWeightedEnsemble.setMembers(java.util.List<WeightedValue<MemberType>> members)
Sets the members of the ensemble.
|
void |
WeightedBinaryEnsemble.setMembers(java.util.List<WeightedValue<MemberType>> members)
Sets the members of the ensemble.
|
void |
WeightedVotingCategorizerEnsemble.setMembers(java.util.List<WeightedValue<MemberType>> members)
Sets the members of the ensemble.
|
Constructor and Description |
---|
AbstractWeightedEnsemble(java.util.List<WeightedValue<MemberType>> members)
Creates a new instance of AbstractWeightedEnsemble.
|
WeightedAdditiveEnsemble(java.util.List<WeightedValue<MemberType>> members)
Creates a new instance of WeightedAdditiveEnsemble.
|
WeightedAdditiveEnsemble(java.util.List<WeightedValue<MemberType>> members,
double bias)
Creates a new instance of WeightedAdditiveEnsemble.
|
WeightedAveragingEnsemble(java.util.List<WeightedValue<MemberType>> members)
Creates a new instance of
WeightedAveragingEnsemble . |
WeightedBinaryEnsemble(java.util.List<WeightedValue<MemberType>> members)
Creates a new instance of WeightedBinaryEnsemble.
|
WeightedVotingCategorizerEnsemble(java.util.Set<CategoryType> categories,
java.util.List<WeightedValue<MemberType>> members)
Creates a new instance of WeightedVotingCategorizerEnsemble.
|
Modifier and Type | Field and Description |
---|---|
protected BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
AbstractBaumWelchAlgorithm.distributionLearner
Learner for the Distribution Functions of the HMM.
|
protected BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
ParallelBaumWelchAlgorithm.DistributionEstimatorTask.distributionLearner
My copy of the PDF estimator.
|
Modifier and Type | Method and Description |
---|---|
WeightedValue<java.lang.Integer> |
ParallelHiddenMarkovModel.ViterbiTask.call() |
protected WeightedValue<Vector> |
HiddenMarkovModel.computeBackwardProbabilities(Vector beta,
Vector b,
double weight)
Computes the backward probability recursion.
|
protected WeightedValue<Vector> |
HiddenMarkovModel.computeForwardProbabilities(Vector alpha,
Vector b,
boolean normalize)
Computes the recursive solution to the forward probabilities of the
HMM.
|
protected WeightedValue<java.lang.Integer> |
HiddenMarkovModel.findMostLikelyState(int destinationState,
Vector delta)
Finds the most-likely next state given the previous "delta" in the
Viterbi algorithm.
|
Modifier and Type | Method and Description |
---|---|
protected java.util.ArrayList<WeightedValue<Vector>> |
HiddenMarkovModel.computeBackwardProbabilities(java.util.ArrayList<Vector> b,
java.util.ArrayList<WeightedValue<Vector>> alphas)
Computes the backward-probabilities for the given observation likelihoods
and the weights from the alphas.
|
protected java.util.ArrayList<WeightedValue<Vector>> |
HiddenMarkovModel.computeForwardProbabilities(java.util.ArrayList<Vector> b,
boolean normalize)
Computes the forward probabilities for the given observation likelihood
sequence.
|
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> |
AbstractBaumWelchAlgorithm.getDistributionLearner()
Getter for distributionLearner
|
Modifier and Type | Method and Description |
---|---|
protected java.util.ArrayList<WeightedValue<Vector>> |
HiddenMarkovModel.computeBackwardProbabilities(java.util.ArrayList<Vector> b,
java.util.ArrayList<WeightedValue<Vector>> alphas)
Computes the backward-probabilities for the given observation likelihoods
and the weights from the alphas.
|
protected java.util.ArrayList<Vector> |
HiddenMarkovModel.computeStateObservationLikelihood(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
double scaleFactor)
Computes the probabilities of the various states over time given the
observation sequence.
|
protected java.util.ArrayList<Vector> |
HiddenMarkovModel.computeStateObservationLikelihood(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
double scaleFactor)
Computes the probabilities of the various states over time given the
observation sequence.
|
protected java.util.ArrayList<Vector> |
ParallelHiddenMarkovModel.computeStateObservationLikelihood(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
double scaleFactor) |
protected java.util.ArrayList<Vector> |
ParallelHiddenMarkovModel.computeStateObservationLikelihood(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
double scaleFactor) |
protected Matrix |
HiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b)
Computes the stochastic transition-probability matrix from the
given probabilities.
|
protected Matrix |
HiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b)
Computes the stochastic transition-probability matrix from the
given probabilities.
|
protected Matrix |
ParallelHiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b) |
protected Matrix |
ParallelHiddenMarkovModel.computeTransitions(java.util.ArrayList<WeightedValue<Vector>> alphas,
java.util.ArrayList<WeightedValue<Vector>> betas,
java.util.ArrayList<Vector> b) |
static <ObservationType> |
HiddenMarkovModel.createRandom(int numStates,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> learner,
java.util.Collection<? extends ObservationType> data,
java.util.Random random)
Creates a Hidden Markov Model with the same PMF/PDF for each state,
but sampling the columns of the transition matrix and the initial
probability distributions from a diffuse Dirichlet.
|
void |
AbstractBaumWelchAlgorithm.setDistributionLearner(BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner)
Setter for distributionLearner
|
Constructor and Description |
---|
AbstractBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of AbstractBaumWelchAlgorithm
|
BaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of BaumWelchAlgorithm
|
DistributionEstimatorTask(java.util.Collection<? extends ObservationType> data,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
int index)
Creates an instance of DistributionEstimatorTask
|
ParallelBaumWelchAlgorithm(HiddenMarkovModel<ObservationType> initialGuess,
BatchLearner<java.util.Collection<? extends WeightedValue<? extends ObservationType>>,? extends ComputableDistribution<ObservationType>> distributionLearner,
boolean reestimateInitialProbabilities)
Creates a new instance of ParallelBaumWelchAlgorithm
|
Modifier and Type | Class and Description |
---|---|
protected class |
SuccessiveOverrelaxation.Entry
The
Entry class represents the data that the algorithm keeps
about each training example. |
Modifier and Type | Class and Description |
---|---|
class |
DefaultWeightedValueDiscriminant<ValueType>
An implementation of
ValueDiscriminantPair that stores a double
as the discriminant. |
Modifier and Type | Method and Description |
---|---|
static <ValueType> |
DefaultWeightedValueDiscriminant.create(WeightedValue<? extends ValueType> other)
Convenience method for creating a new
DefaultWeightedValueDiscriminant with a shallow copy of the given
the given value and weight. |
Constructor and Description |
---|
DefaultWeightedValueDiscriminant(WeightedValue<? extends ValueType> other)
Creates a new
DefaultWeightedValueDiscriminant whose weight
and value are taken from the given weighted value. |
Modifier and Type | Class and Description |
---|---|
class |
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>>
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
Modifier and Type | Method and Description |
---|---|
WeightedValue<ProbabilityFunction<ObservationType>> |
MaximumAPosterioriCategorizer.getCategory(CategoryType category)
Gets the prior probability weight and conditional distribution for
the given category.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.Collection<? extends WeightedValue<? extends InputType>> |
KernelScalarFunction.examples
The list of weighted examples that are used for categorization.
|
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends WeightedValue<? extends InputType>> |
KernelScalarFunction.getExamples()
Gets the list of weighted examples that categorizer is using.
|
Modifier and Type | Method and Description |
---|---|
void |
KernelScalarFunction.setExamples(java.util.Collection<? extends WeightedValue<? extends InputType>> examples)
Sets the list of weighted examples that categorizer is using.
|
Constructor and Description |
---|
KernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias)
Creates a new instance of KernelScalarFunction with the given kernel,
weighted examples, and bias.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel and weighted examples.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel, weighted examples, and bias.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias,
double constantWeight,
double constantValue)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel, weighted examples, and bias.
|
Modifier and Type | Method and Description |
---|---|
static double |
UnivariateStatisticsUtil.computeWeightedCentralMoment(java.lang.Iterable<? extends WeightedValue<? extends java.lang.Number>> data,
double mean,
int moment)
Computes the desired biased estimate central moment of the given dataset.
|
static double |
UnivariateStatisticsUtil.computeWeightedKurtosis(java.util.Collection<? extends WeightedValue<? extends java.lang.Number>> data)
Computes the biased excess kurtosis of the given dataset.
|
static double |
UnivariateStatisticsUtil.computeWeightedMean(java.lang.Iterable<? extends WeightedValue<? extends java.lang.Number>> data)
Computes the arithmetic mean (average, expectation, first central moment)
of a dataset.
|
static Pair<Vector,Matrix> |
MultivariateStatisticsUtil.computeWeightedMeanAndCovariance(java.lang.Iterable<? extends WeightedValue<? extends Vectorizable>> data)
Computes the mean and biased covariance Matrix of a multivariate
weighted data set.
|
static Pair<java.lang.Double,java.lang.Double> |
UnivariateStatisticsUtil.computeWeightedMeanAndVariance(java.lang.Iterable<? extends WeightedValue<? extends java.lang.Number>> data)
Computes the mean and unbiased variance of a Collection of data using
the one-pass approach.
|
java.lang.Double |
WeightedNumberAverager.summarize(java.util.Collection<? extends WeightedValue<? extends java.lang.Number>> data) |
RingType |
WeightedRingAverager.summarize(java.util.Collection<? extends WeightedValue<RingType>> data) |
static double |
WeightedNumberAverager.weightedAverage(java.lang.Iterable<? extends WeightedValue<? extends java.lang.Number>> data)
Computes the weighted average of the given data.
|
Modifier and Type | Method and Description |
---|---|
WeightedValue<ParameterType> |
MetropolisHastingsAlgorithm.Updater.makeProposal(ParameterType location)
Makes a proposal update given the current parameter set
|
Modifier and Type | Method and Description |
---|---|
void |
DefaultDataDistribution.WeightedEstimator.update(DefaultDataDistribution.PMF<KeyType> target,
WeightedValue<? extends KeyType> data) |
Modifier and Type | Method and Description |
---|---|
BetaDistribution |
BetaDistribution.WeightedMomentMatchingEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data) |
ExponentialDistribution |
ExponentialDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data) |
GammaDistribution |
GammaDistribution.WeightedMomentMatchingEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data) |
LaplaceDistribution |
LaplaceDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data)
Creates a new instance of LaplaceDistribution using a weighted
Maximum Likelihood estimate based on the given data
|
LogNormalDistribution.PDF |
LogNormalDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data) |
StudentTDistribution.PDF |
StudentTDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data)
Creates a new instance of UnivariateGaussian using a weighted
Maximum Likelihood estimate based on the given data
|
UnivariateGaussian.PDF |
UnivariateGaussian.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data)
Creates a new instance of UnivariateGaussian using a weighted
Maximum Likelihood estimate based on the given data
|
static StudentTDistribution.PDF |
StudentTDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Double>> data,
double defaultVariance)
Creates a new instance of UnivariateGaussian using a weighted
Maximum Likelihood estimate based on the given data
|
NegativeBinomialDistribution |
NegativeBinomialDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Number>> data) |
PoissonDistribution.PMF |
PoissonDistribution.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Number>> data)
Creates a new instance of PoissonDistribution using a weighted
Maximum Likelihood estimate based on the given data.
|
static UnivariateGaussian.PDF |
UnivariateGaussian.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends java.lang.Number>> data,
double defaultVariance)
Creates a new instance of UnivariateGaussian using a weighted
Maximum Likelihood estimate based on the given data
|
MultivariateGaussian.PDF |
MultivariateGaussian.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of weighted samples.
|
static MultivariateGaussian.PDF |
MultivariateGaussian.WeightedMaximumLikelihoodEstimator.learn(java.util.Collection<? extends WeightedValue<? extends Vector>> data,
double defaultCovariance)
Computes the Gaussian that estimates the maximum likelihood of
generating the given set of weighted samples.
|
Modifier and Type | Method and Description |
---|---|
UnivariateGaussian.PDF |
UnivariateMonteCarloIntegrator.getMean(java.util.List<? extends WeightedValue<? extends java.lang.Double>> samples) |
Distribution<? extends OutputType> |
MonteCarloIntegrator.getMean(java.util.List<? extends WeightedValue<? extends OutputType>> samples)
Computes the Monte Carlo distribution of the given weighted samples.
|
MultivariateGaussian.PDF |
MultivariateMonteCarloIntegrator.getMean(java.util.List<? extends WeightedValue<? extends Vector>> samples) |
<SampleType> |
UnivariateMonteCarloIntegrator.integrate(java.util.List<? extends WeightedValue<? extends SampleType>> samples,
Evaluator<? super SampleType,? extends java.lang.Double> expectationFunction) |
<SampleType> |
MonteCarloIntegrator.integrate(java.util.List<? extends WeightedValue<? extends SampleType>> samples,
Evaluator<? super SampleType,? extends OutputType> expectationFunction)
Integrates the given function given weighted samples from another
function.
|
<SampleType> |
MultivariateMonteCarloIntegrator.integrate(java.util.List<? extends WeightedValue<? extends SampleType>> samples,
Evaluator<? super SampleType,? extends Vector> expectationFunction) |
Modifier and Type | Class and Description |
---|---|
class |
DefaultWeightedValue<ValueType>
The
WeightedValue class implements a simple generic container
that holds a value and a weight assigned to the value. |
Modifier and Type | Method and Description |
---|---|
int |
DefaultWeightedValue.WeightComparator.compare(WeightedValue<?> first,
WeightedValue<?> second) |
int |
DefaultWeightedValue.WeightComparator.compare(WeightedValue<?> first,
WeightedValue<?> second) |
Constructor and Description |
---|
DefaultWeightedValue(WeightedValue<? extends ValueType> other)
Creates a new shallow copy of a
WeightedValue . |