Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.confidence |
Provides confidence-weighted categorization algorithms.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
Class and Description |
---|
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
Class and Description |
---|
DefaultConfidenceWeightedBinaryCategorizer
A default implementation of the
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix. |
DiagonalConfidenceWeightedBinaryCategorizer
A confidence-weighted linear predictor with a diagonal covariance,
which is stored as a vector.
|
Class and Description |
---|
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
Class and Description |
---|
AbstractBinaryCategorizer
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
AbstractCategorizer
An abstract implementation of the
Categorizer interface. |
AbstractDiscriminantBinaryCategorizer
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
AbstractDiscriminantCategorizer
An abstract implementation of the
DiscriminantCategorizer interface. |
BinaryCategorizer
The
BinaryCategorizer extends the Categorizer
interface by enforcing that the output categories are boolean values, which
means that the categorizer is performing binary categorization. |
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
DiscriminantBinaryCategorizer
Interface for a linear discriminant categorizer in the binary categorization
domain.
|
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
Class and Description |
---|
AbstractBinaryCategorizer
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
AbstractDiscriminantBinaryCategorizer
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
BinaryCategorizer
The
BinaryCategorizer extends the Categorizer
interface by enforcing that the output categories are boolean values, which
means that the categorizer is performing binary categorization. |
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
DefaultKernelBinaryCategorizer
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
DiscriminantBinaryCategorizer
Interface for a linear discriminant categorizer in the binary categorization
domain.
|
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
LinearMultiCategorizer
A multi-category version of the LinearBinaryCategorizer that keeps a separate
LinearBinaryCategorizer for each category.
|
ThresholdBinaryCategorizer
Interface for a binary categorizer that uses a threshold to determine the
categorization.
|
Class and Description |
---|
AbstractBinaryCategorizer
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
AbstractDiscriminantBinaryCategorizer
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
BinaryCategorizer
The
BinaryCategorizer extends the Categorizer
interface by enforcing that the output categories are boolean values, which
means that the categorizer is performing binary categorization. |
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
DefaultKernelBinaryCategorizer
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
DiscriminantBinaryCategorizer
Interface for a linear discriminant categorizer in the binary categorization
domain.
|
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
KernelBinaryCategorizer
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
ThresholdBinaryCategorizer
Interface for a binary categorizer that uses a threshold to determine the
categorization.
|
Class and Description |
---|
KernelBinaryCategorizer
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
Class and Description |
---|
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
VectorElementThresholdCategorizer
The
VectorElementThresholdCategorizer class implements a
BinaryCategorizer that categorizes an input vector by applying a
threshold to an element in a the vector. |
Class and Description |
---|
AbstractBinaryCategorizer
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
AbstractCategorizer
An abstract implementation of the
Categorizer interface. |
AbstractConfidenceWeightedBinaryCategorizer
Unit tests for class AbstractConfidenceWeightedBinaryCategorizer.
|
AbstractDiscriminantBinaryCategorizer
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
AbstractDiscriminantCategorizer
An abstract implementation of the
DiscriminantCategorizer interface. |
AbstractThresholdBinaryCategorizer
Categorizer that first maps the input space onto a real value, then
uses a threshold to map the result onto lowValue (for strictly less than the
threshold) or highValue (for greater than or equal to the threshold).
|
BinaryCategorizer
The
BinaryCategorizer extends the Categorizer
interface by enforcing that the output categories are boolean values, which
means that the categorizer is performing binary categorization. |
BinaryVersusCategorizer
An adapter that allows binary categorizers to be adapted for multi-category
problems by applying a binary categorizer to each pair of categories.
|
Categorizer
The
Categorizer interface defines the functionality of an
object that can take an input and evaluate what category out of a fixed
set of categories it belongs to. |
CompositeCategorizer
Composes a preprocessor function with a categorizer.
|
ConfidenceWeightedBinaryCategorizer
Interface for a confidence-weighted binary categorizer, which defines a
distribution over linear binary categorizers.
|
DiscriminantBinaryCategorizer
Interface for a linear discriminant categorizer in the binary categorization
domain.
|
DiscriminantCategorizer
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
EvaluatorToCategorizerAdapter
The
EvaluatorToCategorizerAdapter class implements an adapter from a
general Evaluator to be a Categorizer . |
EvaluatorToCategorizerAdapter.Learner
The
EvaluatorToCategorizerAdapter.Learner class implements a
simple supervised learner for a EvaluatorToCategorizerAdapter . |
FisherLinearDiscriminantBinaryCategorizer
A Fisher Linear Discriminant classifier, which creates an optimal linear
separating plane between two Gaussian classes of different covariances.
|
KernelBinaryCategorizer
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
LinearMultiCategorizer
A multi-category version of the LinearBinaryCategorizer that keeps a separate
LinearBinaryCategorizer for each category.
|
MaximumAPosterioriCategorizer
Categorizer that returns the category with the highest posterior likelihood
for a given observation.
|
MaximumAPosterioriCategorizer.Learner
Learner for the MAP categorizer
|
ScalarFunctionToBinaryCategorizerAdapter
Adapts a scalar function to be a categorizer using a threshold.
|
ScalarThresholdBinaryCategorizer
The
ScalarThresholdBinaryCategorizer class implements a binary
categorizer that uses a threshold to categorize a given double. |
ThresholdBinaryCategorizer
Interface for a binary categorizer that uses a threshold to determine the
categorization.
|
VectorElementThresholdCategorizer
The
VectorElementThresholdCategorizer class implements a
BinaryCategorizer that categorizes an input vector by applying a
threshold to an element in a the vector. |
WinnerTakeAllCategorizer
Adapts an evaluator that outputs a vector to be used as a categorizer.
|
Class and Description |
---|
DefaultKernelBinaryCategorizer
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
Class and Description |
---|
ScalarThresholdBinaryCategorizer
The
ScalarThresholdBinaryCategorizer class implements a binary
categorizer that uses a threshold to categorize a given double. |