Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
Modifier and Type | Method and Description |
---|---|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel) |
<InputType> |
AbstractLinearCombinationOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel)
Creates the initial learned object with a given kernel.
|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Run this algorithm on a batch of data using the given kernel function.
|
Modifier and Type | Method and Description |
---|---|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.createKernelLearner(Kernel<? super InputType> kernel) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.createKernelLearner(Kernel<? super InputType> kernel)
Creates a new kernel-based learner using the standard learning interfaces
based on this learner and its parameters.
|
Modifier and Type | Method and Description |
---|---|
protected <InputType> |
AbstractLinearCombinationOnlineLearner.computeDecay(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted,
double update)
Computes the decay scalar for the existing weights.
|
protected <InputType> |
OnlineShiftingPerceptron.computeDecay(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted,
double update) |
protected <InputType> |
AbstractLinearCombinationOnlineLearner.computeRescaling(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted,
double update,
double decay)
Computes the rescaling for the new weights.
|
protected abstract <InputType> |
AbstractLinearCombinationOnlineLearner.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
protected <InputType> |
OnlineBinaryMarginInfusedRelaxedAlgorithm.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted) |
<InputType> |
OnlinePassiveAggressivePerceptron.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted) |
<InputType> |
OnlinePerceptron.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted) |
<InputType> |
OnlineRampPassiveAggressivePerceptron.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted) |
<InputType> |
OnlineShiftingPerceptron.computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label,
double predicted) |
protected <InputType> |
AbstractLinearCombinationOnlineLearner.initialize(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory)
Initializes the kernel binary categorizer.
|
protected <InputType> |
OnlineBinaryMarginInfusedRelaxedAlgorithm.initialize(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory) |
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
<InputType> |
AbstractLinearCombinationOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output) |
<InputType> |
AggressiveRelaxedOnlineMaximumMarginAlgorithm.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
<InputType> |
Ballseptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
<InputType> |
RelaxedOnlineMaximumMarginAlgorithm.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
java.lang.Boolean output) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
java.lang.Boolean output)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
Modifier and Type | Class and Description |
---|---|
static class |
Forgetron.Result<InputType>
The result object learned by the
Forgetron , which extends
the DefaultKernelBinaryCategorizer with some additional state
information needed in the update step. |
Modifier and Type | Method and Description |
---|---|
DefaultKernelBinaryCategorizer<InputType> |
AbstractOnlineKernelBinaryCategorizerLearner.createInitialLearnedObject() |
DefaultKernelBinaryCategorizer<InputType> |
Forgetron.createInitialLearnedObject() |
DefaultKernelBinaryCategorizer<InputType> |
Forgetron.Basic.createInitialLearnedObject() |
DefaultKernelBinaryCategorizer<InputType> |
KernelBinaryCategorizerOnlineLearnerAdapter.createInitialLearnedObject() |
DefaultKernelBinaryCategorizer<InputType> |
RemoveOldestKernelPerceptron.createInitialLearnedObject() |
DefaultKernelBinaryCategorizer<InputType> |
KernelPerceptron.getResult() |
Modifier and Type | Method and Description |
---|---|
protected void |
Projectron.applyUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
double actual,
double margin,
double kernelInputInput,
double delta,
Vector d)
Apply the update for the Projectron.
|
protected void |
Projectron.LinearSoftMargin.applyUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
double actual,
double margin,
double kernelInputInput,
double delta,
Vector d) |
protected void |
KernelPerceptron.setResult(DefaultKernelBinaryCategorizer<InputType> result)
Sets the object currently being result.
|
void |
KernelBinaryCategorizerOnlineLearnerAdapter.update(DefaultKernelBinaryCategorizer<InputType> target,
InputOutputPair<? extends InputType,java.lang.Boolean> data) |
abstract void |
AbstractOnlineKernelBinaryCategorizerLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output)
Updates the target categorizer based on the given input and its
associated output.
|
void |
Forgetron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
Forgetron.Basic.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
KernelBinaryCategorizerOnlineLearnerAdapter.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output) |
void |
OnlineKernelPerceptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
OnlineKernelRandomizedBudgetPerceptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output) |
void |
Projectron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
RemoveOldestKernelPerceptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
Stoptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label) |
void |
AbstractOnlineKernelBinaryCategorizerLearner.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
java.lang.Boolean output) |
void |
KernelBinaryCategorizerOnlineLearnerAdapter.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
java.lang.Boolean output) |
static <InputType> |
OnlineKernelPerceptron.update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean label,
boolean updateBias)
Performs a Perceptron update step on the given target.
|
Modifier and Type | Method and Description |
---|---|
static <InputType> |
KernelUtil.norm2(DefaultKernelBinaryCategorizer<InputType> target)
Computes the 2-norm of the weight vector implied by the given kernel
binary categorizer.
|
static <InputType> |
KernelUtil.norm2Squared(DefaultKernelBinaryCategorizer<InputType> target)
Computes the squared 2-norm of the weight vector implied by the given
kernel binary categorizer.
|
static void |
KernelUtil.scaleEquals(DefaultKernelBinaryCategorizer<?> target,
double scale)
Scales all of the weights in the given kernel binary categorizer by
the given value.
|