Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.delta |
Provides an abstract class for helping to implement variants of the Burrows'
Delta algorithm.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
Modifier and Type | Class and Description |
---|---|
class |
DiscreteNaiveBayesCategorizer<InputType,CategoryType>
Implementation of a Naive Bayes Classifier for Discrete Data.
|
class |
VectorNaiveBayesCategorizer<CategoryType,DistributionType extends UnivariateProbabilityDensityFunction>
A naive Bayesian categorizer that takes an input vector and applies an
independent scalar probability density function to each one.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDeltaCategorizer<CategoryType>
The Burrows Delta algorithm is primarily used for authorship attribution, but
can be used for other applications.
|
class |
BurrowsDeltaCategorizer<CategoryType>
The regular Burrows' Delta algorithm implementation.
|
class |
CosineDeltaCategorizer<CategoryType>
The Cosine Delta algorithm implementation.
|
Modifier and Type | Class and Description |
---|---|
class |
VotingCategorizerEnsemble<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An ensemble of categorizers that determine the result based on an
equal-weight vote.
|
class |
WeightedBinaryEnsemble<InputType,MemberType extends Evaluator<? super InputType,? extends java.lang.Boolean>>
The
WeightedBinaryEnsemble class implements an Ensemble of
BinaryCategorizer objects where each categorizer is assigned a
weight and the category is selected by choosing the one with the largest
sum of weights. |
class |
WeightedVotingCategorizerEnsemble<InputType,CategoryType,MemberType extends Evaluator<? super InputType,? extends CategoryType>>
An ensemble of categorizers where each ensemble member is evaluated with the
given input to find the category to which its weighted votes are assigned.
|
Modifier and Type | Class and Description |
---|---|
static class |
OnlineShiftingPerceptron.LinearResult
This is the result learned by the shifting perceptron.
|
Modifier and Type | Class and Description |
---|---|
static class |
Forgetron.Result<InputType>
The result object learned by the
Forgetron , which extends
the DefaultKernelBinaryCategorizer with some additional state
information needed in the update step. |
Modifier and Type | Interface and Description |
---|---|
interface |
DeciderLearner<InputType,OutputType,CategoryType,DeciderType extends Categorizer<? super InputType,? extends CategoryType>>
The
DeciderLearner interface defines the functionality of a learner
that can be used to learn a decision function inside a decision tree. |
Modifier and Type | Class and Description |
---|---|
class |
CategorizationTree<InputType,OutputType>
The
CategorizationTree class extends the DecisionTree class
to implement a decision tree that does categorization. |
Modifier and Type | Field and Description |
---|---|
protected Categorizer<? super InputType,? extends InteriorType> |
AbstractDecisionTreeNode.decider
The decider used to make a decision as to which child use.
|
Modifier and Type | Method and Description |
---|---|
Categorizer<? super InputType,? extends InteriorType> |
AbstractDecisionTreeNode.getDecider()
Gets the decider used at this node.
|
Modifier and Type | Method and Description |
---|---|
protected <DecisionType> |
AbstractDecisionTreeLearner.learnChildNodes(AbstractDecisionTreeNode<InputType,OutputType,DecisionType> node,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
Categorizer<? super InputType,? extends DecisionType> decider)
Learns the child nodes for a node using the given data at the node
plus the decision function for the node.
|
void |
AbstractDecisionTreeNode.setDecider(Categorizer<? super InputType,? extends InteriorType> decider)
Sets the decider used at this node.
|
<DecisionType> |
AbstractDecisionTreeLearner.splitData(java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
Categorizer<? super InputType,? extends DecisionType> decider)
Splits the data into new lists based on the given decision function.
|
Constructor and Description |
---|
AbstractDecisionTreeNode(DecisionTreeNode<InputType,OutputType> parent,
Categorizer<? super InputType,? extends InteriorType> decider,
java.lang.Object incomingValue)
Creates a new instance of CategorizationTreeNode.
|
CategorizationTreeNode(DecisionTreeNode<InputType,OutputType> parent,
Categorizer<? super InputType,? extends InteriorType> decider,
OutputType outputCategory,
java.lang.Object incomingValue)
Creates a new instance of CategorizationTreeNode.
|
RegressionTreeNode(DecisionTreeNode<InputType,java.lang.Double> parent,
Categorizer<? super InputType,? extends InteriorType> decider,
double value)
Creates a new instance of RegressionTreeNode.
|
RegressionTreeNode(DecisionTreeNode<InputType,java.lang.Double> parent,
Categorizer<? super InputType,? extends InteriorType> decider,
Evaluator<? super InputType,java.lang.Double> scalarFunction,
double value,
java.lang.Object incomingValue)
Creates a new instance of RegressionTreeNode.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BinaryCategorizer<InputType>
The
BinaryCategorizer extends the Categorizer
interface by enforcing that the output categories are boolean values, which
means that the categorizer is performing binary categorization. |
interface |
ConfidenceWeightedBinaryCategorizer
Interface for a confidence-weighted binary categorizer, which defines a
distribution over linear binary categorizers.
|
interface |
DiscriminantBinaryCategorizer<InputType>
Interface for a linear discriminant categorizer in the binary categorization
domain.
|
interface |
DiscriminantCategorizer<InputType,CategoryType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
Interface for a
Categorizer that can produce a value to discriminate
between how well different instances fit a given category. |
interface |
ThresholdBinaryCategorizer<InputType>
Interface for a binary categorizer that uses a threshold to determine the
categorization.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBinaryCategorizer<InputType>
The
AbstractBinaryCategorizer implements the commonality of
the BinaryCategorizer , holding the collection of possible
values. |
class |
AbstractCategorizer<InputType,CategoryType>
An abstract implementation of the
Categorizer interface. |
class |
AbstractConfidenceWeightedBinaryCategorizer
Unit tests for class AbstractConfidenceWeightedBinaryCategorizer.
|
class |
AbstractDiscriminantBinaryCategorizer<InputType>
An abstract implementation of the
DiscriminantBinaryCategorizer
interface. |
class |
AbstractDiscriminantCategorizer<InputType,CategoryType,DiscriminantType extends java.lang.Comparable<? super DiscriminantType>>
An abstract implementation of the
DiscriminantCategorizer interface. |
class |
AbstractThresholdBinaryCategorizer<InputType>
Categorizer that first maps the input space onto a real value, then
uses a threshold to map the result onto lowValue (for strictly less than the
threshold) or highValue (for greater than or equal to the threshold).
|
class |
BinaryVersusCategorizer<InputType,CategoryType>
An adapter that allows binary categorizers to be adapted for multi-category
problems by applying a binary categorizer to each pair of categories.
|
class |
CompositeCategorizer<InputType,IntermediateType,CategoryType>
Composes a preprocessor function with a categorizer.
|
class |
DefaultConfidenceWeightedBinaryCategorizer
A default implementation of the
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix. |
class |
DefaultKernelBinaryCategorizer<InputType>
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
class |
DiagonalConfidenceWeightedBinaryCategorizer
A confidence-weighted linear predictor with a diagonal covariance,
which is stored as a vector.
|
class |
EvaluatorToCategorizerAdapter<InputType,CategoryType>
The
EvaluatorToCategorizerAdapter class implements an adapter from a
general Evaluator to be a Categorizer . |
class |
FisherLinearDiscriminantBinaryCategorizer
A Fisher Linear Discriminant classifier, which creates an optimal linear
separating plane between two Gaussian classes of different covariances.
|
class |
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>>
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
class |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
class |
LinearMultiCategorizer<CategoryType>
A multi-category version of the LinearBinaryCategorizer that keeps a separate
LinearBinaryCategorizer for each category.
|
class |
MaximumAPosterioriCategorizer<ObservationType,CategoryType>
Categorizer that returns the category with the highest posterior likelihood
for a given observation.
|
class |
ScalarFunctionToBinaryCategorizerAdapter<InputType>
Adapts a scalar function to be a categorizer using a threshold.
|
class |
ScalarThresholdBinaryCategorizer
The
ScalarThresholdBinaryCategorizer class implements a binary
categorizer that uses a threshold to categorize a given double. |
class |
VectorElementThresholdCategorizer
The
VectorElementThresholdCategorizer class implements a
BinaryCategorizer that categorizes an input vector by applying a
threshold to an element in a the vector. |
class |
WinnerTakeAllCategorizer<InputType,CategoryType>
Adapts an evaluator that outputs a vector to be used as a categorizer.
|
Modifier and Type | Field and Description |
---|---|
protected Categorizer<? super IntermediateType,? extends CategoryType> |
CompositeCategorizer.categorizer
The categorizer.
|
Modifier and Type | Method and Description |
---|---|
Categorizer<? super IntermediateType,? extends CategoryType> |
CompositeCategorizer.getCategorizer()
Gets the categorizer, which takes the output of the preprocessor and
categorizes it.
|
Modifier and Type | Method and Description |
---|---|
void |
CompositeCategorizer.setCategorizer(Categorizer<? super IntermediateType,? extends CategoryType> categorizer)
Sets the categorizer, which takes the output of the preprocessor and
categorizes it.
|
Constructor and Description |
---|
CompositeCategorizer(Evaluator<? super InputType,? extends IntermediateType> preprocessor,
Categorizer<? super IntermediateType,? extends CategoryType> categorizer)
Creates a new
CompositeCategorizer . |