Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
Modifier and Type | Class and Description |
---|---|
static class |
OnlineShiftingPerceptron.LinearResult
This is the result learned by the shifting perceptron.
|
Modifier and Type | Method and Description |
---|---|
LinearBinaryCategorizer |
AbstractOnlineLinearBinaryCategorizerLearner.createInitialLearnedObject() |
LinearBinaryCategorizer |
OnlineShiftingPerceptron.createInitialLearnedObject() |
LinearBinaryCategorizer |
Winnow.createInitialLearnedObject() |
LinearBinaryCategorizer |
LinearizableBinaryCategorizerOnlineLearner.createInitialLinearLearnedObject(VectorFactory<?> vectorFactory)
Creates the initial learned object.
|
LinearBinaryCategorizer |
Perceptron.getResult() |
Modifier and Type | Method and Description |
---|---|
WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> |
OnlineVotedPerceptron.createInitialLearnedObject() |
SupervisedIncrementalLearner<Vectorizable,java.lang.Boolean,LinearBinaryCategorizer> |
LinearizableBinaryCategorizerOnlineLearner.createLinearLearner(VectorFactory<?> vectorFactory)
Creates a new linear learner using the standard learning interfaces
based on this learner and its parameters.
|
static DefaultWeightedValue<LinearBinaryCategorizer> |
OnlineVotedPerceptron.getLastMember(WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> ensemble)
Gets the last member in the ensemble.
|
Modifier and Type | Method and Description |
---|---|
protected double |
AbstractLinearCombinationOnlineLearner.computeDecay(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted,
double update)
Computes the decay scalar for the existing weight vector.
|
protected double |
OnlineShiftingPerceptron.computeDecay(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted,
double update) |
protected double |
AbstractLinearCombinationOnlineLearner.computeRescaling(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted,
double update,
double decay)
Computes the rescaling for the new weight vector.
|
protected abstract double |
AbstractLinearCombinationOnlineLearner.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
protected double |
OnlineBinaryMarginInfusedRelaxedAlgorithm.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted) |
double |
OnlinePassiveAggressivePerceptron.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted) |
double |
OnlinePerceptron.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean label,
double predicted) |
double |
OnlineRampPassiveAggressivePerceptron.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted) |
double |
OnlineShiftingPerceptron.computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean label,
double predicted) |
protected void |
AbstractLinearCombinationOnlineLearner.initialize(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory)
Initializes the linear binary categorizer.
|
protected void |
OnlineBinaryMarginInfusedRelaxedAlgorithm.initialize(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory) |
protected void |
Perceptron.setResult(LinearBinaryCategorizer result)
Sets the object currently being result.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
InputOutputPair<? extends Vectorizable,java.lang.Boolean> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,java.lang.Boolean>> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
AbstractLinearCombinationOnlineLearner.update(LinearBinaryCategorizer target,
Vector input,
boolean label) |
abstract void |
AbstractOnlineLinearBinaryCategorizerLearner.update(LinearBinaryCategorizer target,
Vector input,
boolean output)
The
update method updates an object of ResultType using
the given a new supervised input-output pair, using some form of
"learning" algorithm. |
void |
AggressiveRelaxedOnlineMaximumMarginAlgorithm.update(LinearBinaryCategorizer target,
Vector input,
boolean label) |
void |
Ballseptron.update(LinearBinaryCategorizer target,
Vector input,
boolean label) |
void |
RelaxedOnlineMaximumMarginAlgorithm.update(LinearBinaryCategorizer target,
Vector input,
boolean label) |
void |
Winnow.update(LinearBinaryCategorizer target,
Vector input,
boolean actual) |
void |
AbstractOnlineLinearBinaryCategorizerLearner.update(LinearBinaryCategorizer target,
Vectorizable input,
java.lang.Boolean output) |
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
Vectorizable input,
boolean output,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
Vectorizable input,
java.lang.Boolean output,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
Modifier and Type | Method and Description |
---|---|
static DefaultWeightedValue<LinearBinaryCategorizer> |
OnlineVotedPerceptron.getLastMember(WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> ensemble)
Gets the last member in the ensemble.
|
void |
OnlineVotedPerceptron.update(WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> target,
Vector input,
boolean actual)
The
update method updates an object of ResultType using
the given a new supervised input-output pair, using some form of
"learning" algorithm. |
void |
OnlineVotedPerceptron.update(WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> target,
Vectorizable input,
java.lang.Boolean output) |
Modifier and Type | Field and Description |
---|---|
protected LinearBinaryCategorizer |
PrimalEstimatedSubGradient.result
The categorizer learned as a result of the algorithm.
|
Modifier and Type | Method and Description |
---|---|
LinearBinaryCategorizer |
PrimalEstimatedSubGradient.getResult() |
Modifier and Type | Class and Description |
---|---|
class |
AbstractConfidenceWeightedBinaryCategorizer
Unit tests for class AbstractConfidenceWeightedBinaryCategorizer.
|
class |
DefaultConfidenceWeightedBinaryCategorizer
A default implementation of the
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix. |
class |
DiagonalConfidenceWeightedBinaryCategorizer
A confidence-weighted linear predictor with a diagonal covariance,
which is stored as a vector.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.Map<CategoryType,LinearBinaryCategorizer> |
LinearMultiCategorizer.prototypes
A map of each category to its prototype categorizer.
|
Modifier and Type | Method and Description |
---|---|
LinearBinaryCategorizer |
LinearBinaryCategorizer.clone() |
Modifier and Type | Method and Description |
---|---|
java.util.Map<CategoryType,LinearBinaryCategorizer> |
LinearMultiCategorizer.getPrototypes()
Gets the mapping of categories to prototypes.
|
Modifier and Type | Method and Description |
---|---|
void |
LinearMultiCategorizer.setPrototypes(java.util.Map<CategoryType,LinearBinaryCategorizer> prototypes)
Sets the mapping of categories to prototypes.
|
Constructor and Description |
---|
LinearBinaryCategorizer(LinearBinaryCategorizer other)
Creates a new copy of a LinearBinaryCategorizer.
|
Constructor and Description |
---|
LinearMultiCategorizer(java.util.Map<CategoryType,LinearBinaryCategorizer> prototypes)
Creates a new
LinearMultiCategorizer with the given prototypes. |