Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
Modifier and Type | Class and Description |
---|---|
static class |
OnlineShiftingPerceptron.LinearResult
This is the result learned by the shifting perceptron.
|
Modifier and Type | Class and Description |
---|---|
static class |
Forgetron.Result<InputType>
The result object learned by the
Forgetron , which extends
the DefaultKernelBinaryCategorizer with some additional state
information needed in the update step. |
Modifier and Type | Interface and Description |
---|---|
interface |
ConfidenceWeightedBinaryCategorizer
Interface for a confidence-weighted binary categorizer, which defines a
distribution over linear binary categorizers.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractConfidenceWeightedBinaryCategorizer
Unit tests for class AbstractConfidenceWeightedBinaryCategorizer.
|
class |
AbstractThresholdBinaryCategorizer<InputType>
Categorizer that first maps the input space onto a real value, then
uses a threshold to map the result onto lowValue (for strictly less than the
threshold) or highValue (for greater than or equal to the threshold).
|
class |
DefaultConfidenceWeightedBinaryCategorizer
A default implementation of the
ConfidenceWeightedBinaryCategorizer
that stores a full mean and covariance matrix. |
class |
DefaultKernelBinaryCategorizer<InputType>
A default implementation of the
KernelBinaryCategorizer that uses
the standard way of representing the examples (supports) using a
DefaultWeightedValue . |
class |
DiagonalConfidenceWeightedBinaryCategorizer
A confidence-weighted linear predictor with a diagonal covariance,
which is stored as a vector.
|
class |
FisherLinearDiscriminantBinaryCategorizer
A Fisher Linear Discriminant classifier, which creates an optimal linear
separating plane between two Gaussian classes of different covariances.
|
class |
KernelBinaryCategorizer<InputType,EntryType extends WeightedValue<? extends InputType>>
The
KernelBinaryCategorizer class implements a binary
categorizer that uses a kernel to do its categorization. |
class |
LinearBinaryCategorizer
The
LinearBinaryCategorizer class implements a binary
categorizer that is implemented by a linear function. |
class |
ScalarFunctionToBinaryCategorizerAdapter<InputType>
Adapts a scalar function to be a categorizer using a threshold.
|
class |
ScalarThresholdBinaryCategorizer
The
ScalarThresholdBinaryCategorizer class implements a binary
categorizer that uses a threshold to categorize a given double. |
class |
VectorElementThresholdCategorizer
The
VectorElementThresholdCategorizer class implements a
BinaryCategorizer that categorizes an input vector by applying a
threshold to an element in a the vector. |