Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
Modifier and Type | Field and Description |
---|---|
protected DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> |
RandomSubVectorThresholdLearner.subLearner
The decider learner for the subspace.
|
Modifier and Type | Method and Description |
---|---|
VectorElementThresholdCategorizer |
VectorThresholdVarianceLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,java.lang.Double>> data)
Learns a VectorElementThresholdCategorizer from the given data by
picking the vector element and threshold that best maximizes information
gain.
|
VectorElementThresholdCategorizer |
AbstractVectorThresholdMaximumGainLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data) |
VectorElementThresholdCategorizer |
RandomSubVectorThresholdLearner.learn(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data) |
Modifier and Type | Method and Description |
---|---|
DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> |
RandomSubVectorThresholdLearner.getSubLearner()
Gets the learner used to learn a threshold function over the subspace.
|
Modifier and Type | Method and Description |
---|---|
void |
RandomSubVectorThresholdLearner.setSubLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner)
Sets the learner used to learn a threshold function over the subspace.
|
Constructor and Description |
---|
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
int[] dimensionsToConsider,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner . |
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
java.util.Random random)
Creates a new
RandomSubVectorThresholdLearner . |
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner . |
Modifier and Type | Method and Description |
---|---|
VectorElementThresholdCategorizer |
VectorElementThresholdCategorizer.clone() |
Constructor and Description |
---|
VectorElementThresholdCategorizer(VectorElementThresholdCategorizer other)
Creates a new instance of
VectorElementThresholdCategorizer . |