Package | Description |
---|---|
gov.sandia.cognition.algorithm |
Provides general interfaces and implementations for algorithms.
|
gov.sandia.cognition.algorithm.event |
Provides useful components for handling algorithm events.
|
gov.sandia.cognition.learning.algorithm |
Provides general interfaces for learning algorithms.
|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization |
Provides minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.line |
Provides line (scalar) minimization algorithms.
|
gov.sandia.cognition.learning.algorithm.minimization.matrix |
Provides matrix solving algorithms.
|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.learning.performance |
Provides performance measures.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
Modifier and Type | Interface and Description |
---|---|
interface |
AnytimeAlgorithm<ResultType>
The
AnytimeAlgorithm interface defines the functionality of an
iterative algorithm that is stoppable and can return intermediate results. |
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeAlgorithm<ResultType>
A partial implementation of the common functionality of an
AnytimeAlgorithm . |
class |
AbstractIterativeAlgorithm
The
AbstractIterativeAlgorithm class implements a simple part of
the IterativeAlgorithm interface that manages the listeners for the
algorithm. |
class |
AnytimeAlgorithmWrapper<ResultType,InternalAlgorithm extends AnytimeAlgorithm<?>>
Wraps an AnytimeAlgorithm.
|
Modifier and Type | Method and Description |
---|---|
void |
AnytimeAlgorithmWrapper.algorithmEnded(IterativeAlgorithm algorithm) |
void |
IterativeAlgorithmListener.algorithmEnded(IterativeAlgorithm algorithm)
This method is called when the algorithm has ended, after the last step
of the algorithm.
|
void |
AnytimeAlgorithmWrapper.algorithmStarted(IterativeAlgorithm algorithm) |
void |
IterativeAlgorithmListener.algorithmStarted(IterativeAlgorithm algorithm)
This method is called when a algorithm has started, before the first
step of the algorithm.
|
void |
AnytimeAlgorithmWrapper.stepEnded(IterativeAlgorithm algorithm) |
void |
IterativeAlgorithmListener.stepEnded(IterativeAlgorithm algorithm)
This method is called when the algorithm has ended a step of its
execution.
|
void |
AnytimeAlgorithmWrapper.stepStarted(IterativeAlgorithm algorithm) |
void |
IterativeAlgorithmListener.stepStarted(IterativeAlgorithm algorithm)
This method is called when the algorithm has started a step in its
execution.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractIterativeAlgorithmListener.algorithmEnded(IterativeAlgorithm algorithm) |
void |
AbstractIterativeAlgorithmListener.algorithmStarted(IterativeAlgorithm algorithm) |
void |
AbstractIterativeAlgorithmListener.stepEnded(IterativeAlgorithm algorithm) |
void |
IterationMeasurablePerformanceReporter.stepEnded(IterativeAlgorithm algorithm) |
void |
AbstractIterativeAlgorithmListener.stepStarted(IterativeAlgorithm algorithm) |
void |
IterationStartReporter.stepStarted(IterativeAlgorithm algorithm) |
Modifier and Type | Interface and Description |
---|---|
interface |
AnytimeBatchLearner<DataType,ResultType>
A batch learner that is also and Anytime algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeBatchLearner<DataType,ResultType>
The
AbstractAnytimeBatchLearner abstract class
implements a standard method for conforming to the BatchLearner and
AnytimeLearner (IterativeAlgorithm and
StoppableAlgorithm ) interfaces. |
class |
AbstractAnytimeSupervisedBatchLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>>
The
AbstractAnytimeSupervisedBatchLearner abstract class extends
the AbstractAnytimeBatchLearner to implement the
SupervisedBatchLearner interface. |
Modifier and Type | Class and Description |
---|---|
class |
SimulatedAnnealer<CostParametersType,AnnealedType>
The SimulatedAnnealer class implements the simulated annealing algorithm
using the provided cost function and perturbation function.
|
Modifier and Type | Class and Description |
---|---|
class |
AffinityPropagation<DataType>
The
AffinityPropagation algorithm requires three parameters:
a divergence function, a value to use for self-divergence, and a damping
factor (called lambda in the paper; 0.5 is the default). |
class |
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The
AgglomerativeClusterer implements an agglomerative clustering
algorithm, which is a type of hierarchical clustering algorithm. |
class |
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The
DBSCAN algorithm requires three parameters: a distance
metric, a value for neighborhood radius, and a value for the minimum number
of surrounding neighbors for a point to be considered non-noise. |
class |
DirichletProcessClustering
Clustering algorithm that wraps Dirichlet Process Mixture Model.
|
class |
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The
KMeansClusterer class implements the standard k-means
(k-centroids) clustering algorithm. |
class |
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
not have sufficient membership to pass a simple statistical significance
test.
|
class |
MiniBatchKMeansClusterer<DataType extends Vector>
Approximates k-means clustering by working on random subsets of the
data.
|
class |
OptimizedKMeansClusterer<DataType>
This class implements an optimized version of the k-means algorithm that
makes use of the triangle inequality to compute the same answer as k-means
while using less distance calculations.
|
class |
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm.
|
class |
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The
PartitionalClusterer implements a partitional clustering
algorithm, which is a type of hierarchical clustering algorithm. |
Modifier and Type | Interface and Description |
---|---|
interface |
BagBasedCategorizerEnsembleLearner<InputType,CategoryType>
Interface for a bag-based ensemble learner.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaggingLearner<InputType,OutputType,MemberType,EnsembleType extends Evaluator<? super InputType,? extends OutputType>>
Learns an ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
AdaBoost<InputType>
The
AdaBoost class implements the Adaptive Boosting (AdaBoost)
algorithm formulated by Yoav Freund and Robert Shapire. |
class |
BaggingCategorizerLearner<InputType,CategoryType>
Learns an categorization ensemble by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BaggingRegressionLearner<InputType>
Learns an ensemble for regression by randomly sampling with replacement
(duplicates allowed) some percentage of the size of the data (defaults to
100%) on each iteration to train a new ensemble member.
|
class |
BinaryBaggingLearner<InputType>
The
BinaryBaggingLearner implements the Bagging learning algorithm. |
class |
CategoryBalancedBaggingLearner<InputType,CategoryType>
An extension of the basic bagging learner that attempts to sample bags that
have equal numbers of examples from every category.
|
class |
CategoryBalancedIVotingLearner<InputType,CategoryType>
An extension of IVoting for dealing with skew problems that makes sure that
there are an equal number of examples from each category in each sample that
an ensemble member is trained on.
|
class |
IVotingCategorizerLearner<InputType,CategoryType>
Learns an ensemble in a method similar to bagging except that on each
iteration the bag is built from two parts, each sampled from elements from
disjoint sets.
|
class |
MultiCategoryAdaBoost<InputType,CategoryType>
An implementation of a multi-class version of the Adaptive Boosting
(AdaBoost) algorithm, known as AdaBoost.M1.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractCategorizerOutOfBagStoppingCriteria.algorithmEnded(IterativeAlgorithm algorithm) |
void |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria.algorithmEnded(IterativeAlgorithm algorithm) |
void |
AbstractCategorizerOutOfBagStoppingCriteria.algorithmStarted(IterativeAlgorithm algorithm) |
void |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria.algorithmStarted(IterativeAlgorithm algorithm) |
void |
IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria.algorithmStarted(IterativeAlgorithm algorithm) |
void |
AbstractCategorizerOutOfBagStoppingCriteria.stepEnded(IterativeAlgorithm algorithm) |
void |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria.stepEnded(IterativeAlgorithm algorithm) |
Modifier and Type | Class and Description |
---|---|
class |
AbstractFactorizationMachineLearner
An abstract class for learning
FactorizationMachine s. |
class |
FactorizationMachineAlternatingLeastSquares
Implements an Alternating Least Squares (ALS) algorithm for learning a
Factorization Machine.
|
class |
FactorizationMachineStochasticGradient
Implements a Stochastic Gradient Descent (SGD) algorithm for learning a
Factorization Machine.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneticAlgorithm<CostParametersType,GenomeType>
The GeneticAlgorithm class implements a generic genetic algorithm
that uses a given cost function to minimize and a given reproduction
function for generating the population.
|
class |
ParallelizedGeneticAlgorithm<CostParametersType,GenomeType>
This is a parallel implementation of the genetic algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBaumWelchAlgorithm<ObservationType,DataType>
Partial implementation of the Baum-Welch algorithm.
|
class |
BaumWelchAlgorithm<ObservationType>
Implements the Baum-Welch algorithm, also known as the "forward-backward
algorithm", the expectation-maximization algorithm, etc for
Hidden Markov Models (HMMs).
|
class |
ParallelBaumWelchAlgorithm<ObservationType>
A Parallelized implementation of some of the methods of the
Baum-Welch Algorithm.
|
Modifier and Type | Interface and Description |
---|---|
interface |
FunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
Interface for unconstrained minimization of nonlinear functions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeFunctionMinimizer<InputType,OutputType,EvaluatorType extends Evaluator<? super InputType,? extends OutputType>>
A partial implementation of a minimization algorithm that is iterative,
stoppable, and approximate.
|
class |
FunctionMinimizerBFGS
Implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
nonlinear minimization algorithm.
|
class |
FunctionMinimizerConjugateGradient
Conjugate gradient method is a class of algorithms for finding the
unconstrained local minimum of a nonlinear function.
|
class |
FunctionMinimizerDFP
Implementation of the Davidon-Fletcher-Powell (DFP) formula for a
Quasi-Newton minimization update.
|
class |
FunctionMinimizerDirectionSetPowell
Implementation of the derivative-free unconstrained nonlinear direction-set
minimization algorithm called "Powell's Method" by Numerical Recipes.
|
class |
FunctionMinimizerFletcherReeves
This is an implementation of the Fletcher-Reeves conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerGradientDescent
This is an implementation of the classic Gradient Descent algorithm, also
known as Steepest Descent, Backpropagation (for neural nets), or Hill
Climbing.
|
class |
FunctionMinimizerLiuStorey
This is an implementation of the Liu-Storey conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerNelderMead
Implementation of the Downhill Simplex minimization algorithm, also known as
the Nelder-Mead method.
|
class |
FunctionMinimizerPolakRibiere
This is an implementation of the Polack-Ribiere conjugate gradient
minimization procedure.
|
class |
FunctionMinimizerQuasiNewton
This is an abstract implementation of the Quasi-Newton minimization method,
sometimes called "Variable-Metric methods."
This family of minimization algorithms uses first-order gradient information
to find a locally minimum to a scalar function.
|
Modifier and Type | Interface and Description |
---|---|
interface |
LineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Defines the functionality of a line-minimization algorithm, often called a
"line search" algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractAnytimeLineMinimizer<EvaluatorType extends Evaluator<java.lang.Double,java.lang.Double>>
Partial AnytimeAlgorithm implementation of a LineMinimizer.
|
class |
LineMinimizerBacktracking
Implementation of the backtracking line-minimization algorithm.
|
class |
LineMinimizerDerivativeBased
This is an implementation of a line-minimization algorithm proposed by
Fletcher that makes extensive use of first-order derivative information.
|
class |
LineMinimizerDerivativeFree
This is an implementation of a LineMinimizer that does not require
derivative information.
|
Modifier and Type | Class and Description |
---|---|
class |
ConjugateGradientMatrixSolver
Implements a matrix solver using Conjugate Gradient.
|
class |
ConjugateGradientWithPreconditionerMatrixSolver
Implements a matrix solver using Conjugate Gradient with a preconditioner.
|
class |
IterativeMatrixSolver<Operator extends MatrixVectorMultiplier>
Base class for all iterative matrix solvers that takes care of most of the
basic iterative logic and the function minimizer interface.
|
class |
OverconstrainedConjugateGradientMatrixMinimizer
Implements a overconstrained conjugate gradient matrix optimizer.
|
class |
SteepestDescentMatrixSolver
Implements a basic Steepest Descent iterative solver for linear systems of
equations.
|
Modifier and Type | Class and Description |
---|---|
class |
GeneralizedHebbianAlgorithm
Implementation of the Generalized Hebbian Algorithm, also known as
Sanger's Rule, which is a generalization of Oja's Rule.
|
Modifier and Type | Class and Description |
---|---|
class |
BatchMultiPerceptron<CategoryType>
Implements a multi-class version of the standard batch Perceptron learning
algorithm.
|
class |
Perceptron
The
Perceptron class implements the standard Perceptron learning
algorithm that learns a binary classifier based on vector input. |
Modifier and Type | Class and Description |
---|---|
class |
KernelAdatron<InputType>
The
KernelAdatron class implements an online version of the Support
Vector Machine learning algorithm. |
class |
KernelPerceptron<InputType>
The
KernelPerceptron class implements the kernel version of
the Perceptron algorithm. |
Modifier and Type | Interface and Description |
---|---|
interface |
ParameterCostMinimizer<ResultType extends VectorizableVectorFunction>
A anytime algorithm that is used to estimate the locally minimum-cost
parameters of an object.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractLogisticRegression<InputType,OutputType,FunctionType extends Evaluator<? super InputType,OutputType>>
Abstract partial implementation for logistic regression classes.
|
class |
AbstractMinimizerBasedParameterCostMinimizer<ResultType extends VectorizableVectorFunction,EvaluatorType extends Evaluator<? super Vector,? extends java.lang.Double>>
Partial implementation of ParameterCostMinimizer, based on the algorithms
from the minimization package.
|
class |
AbstractParameterCostMinimizer<ResultType extends VectorizableVectorFunction,CostFunctionType extends SupervisedCostFunction<Vector,Vector>>
Partial implementation of ParameterCostMinimizer.
|
class |
FletcherXuHybridEstimation
The Fletcher-Xu hybrid estimation for solving the nonlinear least-squares
parameters.
|
class |
GaussNewtonAlgorithm
Implementation of the Gauss-Newton parameter-estimation procedure.
|
class |
KernelBasedIterativeRegression<InputType>
The
KernelBasedIterativeRegression class implements an online version of
the Support Vector Regression algorithm. |
class |
KernelWeightedRobustRegression<InputType,OutputType>
KernelWeightedRobustRegression takes a supervised learning algorithm that
operates on a weighted collection of InputOutputPairs and modifies the
weight of a sample based on the dataset output and its corresponding
estimate from the Evaluator from the supervised learning algorithm at each
iteration.
|
class |
LeastSquaresEstimator
Abstract implementation of iterative least-squares estimators.
|
class |
LevenbergMarquardtEstimation
Implementation of the nonlinear regression algorithm, known as
Levenberg-Marquardt Estimation (or LMA).
|
class |
LogisticRegression
Performs Logistic Regression by means of the iterative reweighted least
squares (IRLS) algorithm, where the logistic function has an explicit bias
term, and a diagonal L2 regularization term.
|
class |
ParameterDerivativeFreeCostMinimizer
Implementation of a class of objects that uses a derivative-free
minimization algorithm.
|
class |
ParameterDifferentiableCostMinimizer
This class adapts the unconstrained nonlinear minimization algorithms in
the "minimization" package to the task of estimating locally optimal
(minimum-cost) parameter sets.
|
Modifier and Type | Interface and Description |
---|---|
interface |
RootBracketer
Defines the functionality of a algorithm that finds a bracket of a root
from an initial guess.
|
interface |
RootFinder
Defines the functionality of a root-finding algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBracketedRootFinder
Partial implementation of RootFinder that maintains a bracket on the root.
|
class |
AbstractRootFinder
Partial implementation of RootFinder.
|
class |
MinimizerBasedRootFinder
A root finder that uses minimization techniques to find the roots
(zero-crossings).
|
class |
RootBracketExpander
The root-bracketing expansion algorithm.
|
class |
RootFinderBisectionMethod
Bisection algorithm for root finding.
|
class |
RootFinderFalsePositionMethod
The false-position algorithm for root finding.
|
class |
RootFinderNewtonsMethod
Newton's method, sometimes called Newton-Raphson method, uses first-order
derivative information to iteratively locate a root.
|
class |
RootFinderRiddersMethod
The root-finding algorithm due to Ridders.
|
class |
RootFinderSecantMethod
The secant algorithm for root finding.
|
Modifier and Type | Class and Description |
---|---|
class |
PrimalEstimatedSubGradient
An implementation of the Primal Estimated Sub-Gradient Solver (PEGASOS)
algorithm for learning a linear support vector machine (SVM).
|
class |
SequentialMinimalOptimization<InputType>
An implementation of the Sequential Minimal Optimization (SMO) algorithm for
training a Support Vector Machine (SVM), which is a kernel-based binary
categorizer.
|
class |
SuccessiveOverrelaxation<InputType>
The
SuccessiveOverrelaxation class implements the Successive
Overrelaxation (SOR) algorithm for learning a Support Vector Machine (SVM). |
Modifier and Type | Class and Description |
---|---|
class |
AbstractDecisionTreeLearner<InputType,OutputType>
The
AbstractDecisionTreeLearner implements common functionality for
learning algorithms that learn a decision tree. |
class |
CategorizationTreeLearner<InputType,OutputType>
The
CategorizationTreeLearner class implements a supervised learning
algorithm for learning a categorization tree. |
class |
RegressionTreeLearner<InputType>
The
RegressionTreeLearner class implements a learning algorithm for
a regression tree that makes use of a decider learner and a regression
learner. |
Modifier and Type | Class and Description |
---|---|
static class |
GaussianContextRecognizer.Learner
Creates a GaussianContextRecognizer from a Dataset[Vector] using
a BatchClusterer
|
Modifier and Type | Method and Description |
---|---|
void |
AnytimeBatchLearnerValidationPerformanceReporter.stepEnded(IterativeAlgorithm algorithm) |
Modifier and Type | Class and Description |
---|---|
class |
LentzMethod
This class implements Lentz's method for evaluating continued fractions.
|
Modifier and Type | Interface and Description |
---|---|
interface |
MarkovChainMonteCarlo<ObservationType,ParameterType>
Defines the functionality of a Markov chain Monte Carlo algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractMarkovChainMonteCarlo<ObservationType,ParameterType>
Partial abstract implementation of MarkovChainMonteCarlo.
|
class |
DirichletProcessMixtureModel<ObservationType>
An implementation of Dirichlet Process clustering, which estimates the
number of clusters and the centroids of the clusters from a set of
data.
|
class |
MetropolisHastingsAlgorithm<ObservationType,ParameterType>
An implementation of the Metropolis-Hastings MCMC algorithm, which is the
most general formulation of MCMC but can be slow.
|
class |
ParallelDirichletProcessMixtureModel<ObservationType>
A Parallelized version of vanilla Dirichlet Process Mixture Model learning.
|
Modifier and Type | Class and Description |
---|---|
static class |
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner.
|
static class |
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians
|
static class |
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data
|
Modifier and Type | Class and Description |
---|---|
class |
DistributionParameterEstimator<DataType,DistributionType extends ClosedFormDistribution<? extends DataType>>
A method of estimating the parameters of a distribution using an arbitrary
CostFunction and FunctionMinimizer algorithm.
|
Modifier and Type | Class and Description |
---|---|
class |
LatentDirichletAllocationVectorGibbsSampler
A Gibbs sampler for performing Latent Dirichlet Allocation (LDA).
|
class |
ParallelLatentDirichletAllocationVectorGibbsSampler
A parallel implementation of
LatentDirichletAllocationVectorGibbsSampler . |
class |
ProbabilisticLatentSemanticAnalysis
An implementation of the Probabilistic Latent Semantic Analysis (PLSA)
algorithm.
|
Modifier and Type | Method and Description |
---|---|
void |
ProbabilisticLatentSemanticAnalysis.StatusPrinter.stepEnded(IterativeAlgorithm algorithm) |
void |
ProbabilisticLatentSemanticAnalysis.StatusPrinter.stepStarted(IterativeAlgorithm algorithm) |