@PublicationReference(author="Wikipedia", title="Beta distribution", type=WebPage, year=2009, url="http://en.wikipedia.org/wiki/Beta_distribution") public class BetaDistribution extends AbstractClosedFormSmoothUnivariateDistribution implements EstimableDistribution<java.lang.Double,BetaDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
BetaDistribution.CDF
CDF of the Beta-family distribution
|
static class |
BetaDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
static class |
BetaDistribution.PDF
Beta distribution probability density function
|
static class |
BetaDistribution.WeightedMomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
of moments, not maximum likelihood.
|
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_ALPHA
Default alpha, 2.0.
|
static double |
DEFAULT_BETA
Default beta, 2.0.
|
| Constructor and Description |
|---|
BetaDistribution()
Default constructor.
|
BetaDistribution(BetaDistribution other)
Copy Constructor
|
BetaDistribution(double alpha,
double beta)
Creates a new instance of BetaDistribution
|
| Modifier and Type | Method and Description |
|---|---|
BetaDistribution |
clone()
This makes public the clone method on the
Object class and
removes the exception that it throws. |
void |
convertFromVector(Vector parameters)
Sets the parameters of the distribution
|
Vector |
convertToVector()
Gets the parameters of the distribution
|
double |
getAlpha()
Getter for alpha
|
double |
getBeta()
Getter for beta
|
BetaDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
BetaDistribution.MomentMatchingEstimator |
getEstimator()
Gets an estimator associated with this distribution.
|
java.lang.Double |
getMaxSupport()
Gets the minimum support (domain or input) of the distribution.
|
double |
getMeanAsDouble()
Gets the mean of the distribution as a double.
|
java.lang.Double |
getMinSupport()
Gets the minimum support (domain or input) of the distribution.
|
BetaDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
getVariance()
Gets the variance of the distribution.
|
double |
sampleAsDouble(java.util.Random random)
Samples a value from this distribution as a double.
|
void |
sampleInto(java.util.Random random,
double[] output,
int start,
int length)
Samples values from this distribution as an array of doubles.
|
void |
setAlpha(double alpha)
Setter for alpha
|
void |
setBeta(double beta)
Setter for beta
|
getMean, sampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitsample, sample, sampleIntopublic static final double DEFAULT_ALPHA
public static final double DEFAULT_BETA
public BetaDistribution()
public BetaDistribution(double alpha,
double beta)
alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public BetaDistribution(BetaDistribution other)
other - BetaDistribution to copypublic BetaDistribution clone()
AbstractCloneableSerializableObject class and
removes the exception that it throws. Its default behavior is to
automatically create a clone of the exact type of object that the
clone is called on and to copy all primitives but to keep all references,
which means it is a shallow copy.
Extensions of this class may want to override this method (but call
super.clone() to implement a "smart copy". That is, to target
the most common use case for creating a copy of the object. Because of
the default behavior being a shallow copy, extending classes only need
to handle fields that need to have a deeper copy (or those that need to
be reset). Some of the methods in ObjectUtil may be helpful in
implementing a custom clone method.
Note: The contract of this method is that you must use
super.clone() as the basis for your implementation.clone in interface Vectorizableclone in interface CloneableSerializableclone in class AbstractClosedFormUnivariateDistribution<java.lang.Double>public double getMeanAsDouble()
UnivariateDistributiongetMeanAsDouble in interface UnivariateDistribution<java.lang.Double>public double getVariance()
UnivariateDistributiongetVariance in interface UnivariateDistribution<java.lang.Double>public double sampleAsDouble(java.util.Random random)
SmoothUnivariateDistributionsampleAsDouble in interface SmoothUnivariateDistributionsampleAsDouble in class AbstractClosedFormSmoothUnivariateDistributionrandom - Random number generator to use.public void sampleInto(java.util.Random random,
double[] output,
int start,
int length)
SmoothUnivariateDistributionsampleInto in interface SmoothUnivariateDistributionrandom - Random number generator to use.output - The array to write the result into. Cannot be null.start - The offset in the array to start writing at. Cannot be negative.length - The number of values to sample. Cannot be negative.public Vector convertToVector()
convertToVector in interface Vectorizablepublic void convertFromVector(Vector parameters)
convertFromVector in interface Vectorizableparameters - 2-dimensional Vector with [alpha beta]public double getAlpha()
public void setAlpha(double alpha)
alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)public double getBeta()
public void setBeta(double beta)
beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public BetaDistribution.CDF getCDF()
UnivariateDistributiongetCDF in interface ClosedFormUnivariateDistribution<java.lang.Double>getCDF in interface SmoothUnivariateDistributiongetCDF in interface UnivariateDistribution<java.lang.Double>public BetaDistribution.PDF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Double>getProbabilityFunction in interface SmoothUnivariateDistributionpublic java.lang.Double getMinSupport()
UnivariateDistributiongetMinSupport in interface UnivariateDistribution<java.lang.Double>public java.lang.Double getMaxSupport()
UnivariateDistributiongetMaxSupport in interface UnivariateDistribution<java.lang.Double>public BetaDistribution.MomentMatchingEstimator getEstimator()
EstimableDistributiongetEstimator in interface EstimableDistribution<java.lang.Double,BetaDistribution>