@PublicationReference(author={"Andrew Gelman","John B. Carlin","Hal S. Stern","Donald B. Rubin"}, title="Bayesian Data Analysis, Second Edition", type=Book, year=2004, pages=582, notes="Equation A.3") public static class BetaDistribution.MomentMatchingEstimator extends AbstractCloneableSerializable implements DistributionEstimator<java.lang.Double,BetaDistribution>
| Constructor and Description |
|---|
MomentMatchingEstimator()
Default constructor
|
| Modifier and Type | Method and Description |
|---|---|
BetaDistribution |
learn(java.util.Collection<? extends java.lang.Double> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
static BetaDistribution |
learn(double mean,
double variance)
Computes the Beta distribution describes by the given moments
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic BetaDistribution learn(java.util.Collection<? extends java.lang.Double> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends java.lang.Double>,BetaDistribution>data - The data that the learning algorithm will use to create an
object of ResultType.public static BetaDistribution learn(double mean, double variance)
mean - Mean of the distributionvariance - Variance of the distribution