public static class BetaDistribution.PDF extends BetaDistribution implements UnivariateProbabilityDensityFunction
BetaDistribution.CDF, BetaDistribution.MomentMatchingEstimator, BetaDistribution.PDF, BetaDistribution.WeightedMomentMatchingEstimatorDEFAULT_ALPHA, DEFAULT_BETA| Constructor and Description |
|---|
PDF()
Default constructor.
|
PDF(BetaDistribution other)
Copy constructor
|
PDF(double alpha,
double beta)
Creates a new PDF
|
| Modifier and Type | Method and Description |
|---|---|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double x,
double alpha,
double beta)
Evaluate the Beta-distribution PDF for beta(x;alpha,beta)
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
BetaDistribution.PDF |
getProbabilityFunction()
Gets the distribution function associated with this Distribution,
either the PDF or PMF.
|
double |
logEvaluate(double input)
Evaluate the natural logarithm of the distribution function.
|
double |
logEvaluate(java.lang.Double input)
Evaluate the natural logarithm of the distribution function.
|
static double |
logEvaluate(double x,
double alpha,
double beta)
Evaluate the Beta-distribution PDF for beta(x;alpha,beta)
|
clone, convertFromVector, convertToVector, getAlpha, getBeta, getCDF, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getVariance, sampleAsDouble, sampleInto, setAlpha, setBetagetMean, sampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetCDF, getMean, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic PDF()
public PDF(double alpha,
double beta)
alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public PDF(BetaDistribution other)
other - Underlying Beta Distributionpublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic static double evaluate(double x,
double alpha,
double beta)
x - Input to the beta PDF, must be on the interval [0,1]alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public double logEvaluate(java.lang.Double input)
ProbabilityFunctionlogEvaluate in interface ProbabilityFunction<java.lang.Double>input - The input to be evaluatedpublic double logEvaluate(double input)
UnivariateProbabilityDensityFunctionlogEvaluate in interface UnivariateProbabilityDensityFunctioninput - The input value.public static double logEvaluate(double x,
double alpha,
double beta)
x - Input to the beta PDF, must be on the interval [0,1]alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public BetaDistribution.PDF getProbabilityFunction()
ComputableDistributiongetProbabilityFunction in interface ComputableDistribution<java.lang.Double>getProbabilityFunction in interface ProbabilityDensityFunction<java.lang.Double>getProbabilityFunction in interface SmoothUnivariateDistributiongetProbabilityFunction in interface UnivariateProbabilityDensityFunctiongetProbabilityFunction in class BetaDistribution