public static class BetaDistribution.CDF extends BetaDistribution implements SmoothCumulativeDistributionFunction
BetaDistribution.CDF, BetaDistribution.MomentMatchingEstimator, BetaDistribution.PDF, BetaDistribution.WeightedMomentMatchingEstimatorDEFAULT_ALPHA, DEFAULT_BETA| Constructor and Description |
|---|
CDF()
Default constructor.
|
CDF(BetaDistribution other)
Copy constructor
|
CDF(double alpha,
double beta)
Creates a new CDF
|
| Modifier and Type | Method and Description |
|---|---|
java.lang.Double |
differentiate(java.lang.Double input)
Differentiates the output with respect to the input
|
double |
evaluate(double input)
Produces a double output for the given double input
|
java.lang.Double |
evaluate(java.lang.Double input)
Evaluates the function on the given input and returns the output.
|
static double |
evaluate(double x,
double alpha,
double beta)
Evaluate the Beta-distribution CDF for Beta(x;alpha,beta)
|
double |
evaluateAsDouble(java.lang.Double input)
Evaluates the scalar function as a double.
|
BetaDistribution.CDF |
getCDF()
Gets the CDF of a scalar distribution.
|
BetaDistribution.PDF |
getDerivative()
Gets the closed-form derivative of the function.
|
clone, convertFromVector, convertToVector, getAlpha, getBeta, getEstimator, getMaxSupport, getMeanAsDouble, getMinSupport, getProbabilityFunction, getVariance, sampleAsDouble, sampleInto, setAlpha, setBetagetMean, sampleAsDoubles, sampleIntosample, sampleequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetMean, getProbabilityFunction, sampleAsDouble, sampleAsDoubles, sampleIntogetMaxSupport, getMeanAsDouble, getMinSupport, getVariancesample, sample, sampleIntoclone, convertFromVector, convertToVectorpublic CDF()
public CDF(double alpha,
double beta)
alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public CDF(BetaDistribution other)
other - Underlying Beta Distributionpublic java.lang.Double evaluate(java.lang.Double input)
Evaluatorevaluate in interface Evaluator<java.lang.Double,java.lang.Double>evaluate in interface ScalarFunction<java.lang.Double>evaluate in interface UnivariateScalarFunctioninput - The input to evaluate.public double evaluateAsDouble(java.lang.Double input)
ScalarFunctionevaluateAsDouble in interface ScalarFunction<java.lang.Double>evaluateAsDouble in interface UnivariateScalarFunctioninput - The input value.public double evaluate(double input)
UnivariateScalarFunctionevaluate in interface UnivariateScalarFunctioninput - Input to the Evaluatorpublic static double evaluate(double x,
double alpha,
double beta)
x - Input to the beta CDF, must be on the interval [0,1]alpha - Alpha shape parameter, must be greater than 0 (typically greater than 1)beta - Beta shape parameter, must be greater than 0 (typically greater than 1)public BetaDistribution.CDF getCDF()
UnivariateDistributiongetCDF in interface ClosedFormUnivariateDistribution<java.lang.Double>getCDF in interface SmoothUnivariateDistributiongetCDF in interface UnivariateDistribution<java.lang.Double>getCDF in class BetaDistributionpublic BetaDistribution.PDF getDerivative()
ClosedFormDifferentiableEvaluatorgetDerivative in interface ClosedFormDifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>getDerivative in interface SmoothCumulativeDistributionFunctionpublic java.lang.Double differentiate(java.lang.Double input)
DifferentiableEvaluatordifferentiate in interface DifferentiableEvaluator<java.lang.Double,java.lang.Double,java.lang.Double>input - Input about which to compute the derivative