Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
Constructor and Description |
---|
Function(Kernel<? super DataType> kernel,
java.util.List<? extends DataType> data,
Matrix components,
boolean centerData,
Matrix kernelMatrix)
Creates a new Kernel Principal Components Analysis function.
|
KernelPrincipalComponentsAnalysis(Kernel<? super DataType> kernel,
int componentCount)
Creates a new Kernel Principal Components Analysis with the given
kernel and component count.
|
KernelPrincipalComponentsAnalysis(Kernel<? super DataType> kernel,
int componentCount,
boolean centerData)
Creates a new Kernel Principal Components Analysis with the given
kernel and component count.
|
Modifier and Type | Method and Description |
---|---|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel) |
<InputType> |
AbstractLinearCombinationOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.createInitialLearnedObject(Kernel<? super InputType> kernel)
Creates the initial learned object with a given kernel.
|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.createKernelLearner(Kernel<? super InputType> kernel) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.createKernelLearner(Kernel<? super InputType> kernel)
Creates a new kernel-based learner using the standard learning interfaces
based on this learner and its parameters.
|
<InputType> |
AbstractKernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data) |
<InputType> |
KernelizableBinaryCategorizerOnlineLearner.learn(Kernel<? super InputType> kernel,
java.lang.Iterable<? extends InputOutputPair<? extends InputType,java.lang.Boolean>> data)
Run this algorithm on a batch of data using the given kernel function.
|
Modifier and Type | Field and Description |
---|---|
protected Kernel<? super InputType> |
AbstractOnlineKernelBinaryCategorizerLearner.kernel
The kernel to use.
|
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
AbstractOnlineKernelBinaryCategorizerLearner.getKernel() |
Kernel<? super InputType> |
KernelAdatron.getKernel()
Gets the kernel to use.
|
Kernel<? super InputType> |
KernelPerceptron.getKernel()
Gets the kernel to use.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractOnlineKernelBinaryCategorizerLearner.setKernel(Kernel<? super InputType> kernel)
Sets the kernel used by this learner.
|
void |
KernelAdatron.setKernel(Kernel<? super InputType> kernel)
Sets the kernel to use.
|
void |
KernelPerceptron.setKernel(Kernel<? super InputType> kernel)
Sets the kernel to use.
|
Constructor and Description |
---|
AbstractOnlineBudgetedKernelBinaryCategorizerLearner(Kernel<? super InputType> kernel,
int budget)
Creates a new
AbstractOnlineBudgetedKernelBinaryCategorizerLearner
with the given parameters. |
AbstractOnlineKernelBinaryCategorizerLearner(Kernel<? super InputType> kernel)
Creates a new
AbstractOnlineKernelBinaryCategorizerLearner with
the given kernel. |
Basic(Kernel<? super InputType> kernel,
int budget)
Creates a new
Forgetron.Basic with the given kernel and
budget. |
Forgetron(Kernel<? super InputType> kernel,
int budget)
Creates a new
Forgetron with the given kernel and budget. |
Greedy(Kernel<? super InputType> kernel,
int budget)
Creates a new
Forgetron.Greedy with the given kernel and
budget. |
KernelAdatron(Kernel<? super InputType> kernel)
Creates a new KernelAdatron with the given kernel.
|
KernelAdatron(Kernel<? super InputType> kernel,
int maxIterations)
Creates a new KernelAdatron with the given kernel and maximum number
of iterations.
|
KernelBinaryCategorizerOnlineLearnerAdapter(Kernel<? super InputType> kernel,
KernelizableBinaryCategorizerOnlineLearner learner)
Creates a new
KernelBinaryCategorizerOnlineLearnerAdapter with
the given kernel and learner. |
KernelPerceptron(Kernel<? super InputType> kernel)
Creates a new KernelPerceptron with the given kernel.
|
KernelPerceptron(Kernel<? super InputType> kernel,
int maxIterations)
Creates a new KernelPerceptron with the given kernel and maximum number
of iterations.
|
KernelPerceptron(Kernel<? super InputType> kernel,
int maxIterations,
double marginPositive,
double marginNegative)
Creates a new KernelPerceptron with the given parameters.
|
LinearSoftMargin(Kernel<? super InputType> kernel)
Creates a new
Projectron.LinearSoftMargin with the given
kernel and default parameters. |
LinearSoftMargin(Kernel<? super InputType> kernel,
double eta)
Creates a new
Projectron.LinearSoftMargin with the given
parameters. |
OnlineKernelPerceptron(Kernel<? super InputType> kernel)
Creates a new
OnlineKernelPerceptron with the given kernel. |
OnlineKernelRandomizedBudgetPerceptron(Kernel<? super InputType> kernel,
int budget,
java.util.Random random)
Creates a new
OnlineKernelRandomizedBudgetPerceptron with the
given parameters. |
Projectron(Kernel<? super InputType> kernel)
Creates a new
Projectron with the given kernel and default
parameters. |
Projectron(Kernel<? super InputType> kernel,
double eta)
Creates a new
Projectron with the given parameters. |
RemoveOldestKernelPerceptron(Kernel<? super InputType> kernel,
int budget)
Creates a new
RemoveOldestKernelPerceptron with the given
parameters. |
Result(Kernel<? super InputType> kernel)
Creates a new
Result with the given kernel. |
Stoptron(Kernel<? super InputType> kernel,
int budget)
Creates a new
Stoptron with the given parameters. |
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
KernelBasedIterativeRegression.getKernel()
Gets the kernel to use.
|
Kernel<? super InputType> |
LocallyWeightedFunction.getKernel()
Getter for kernel
|
Kernel<? super InputType> |
LocallyWeightedFunction.Learner.getKernel()
Getter for kernel
|
Kernel<? super OutputType> |
KernelWeightedRobustRegression.getKernelWeightingFunction()
Getter for kernelWeightingFunction
|
Modifier and Type | Method and Description |
---|---|
void |
KernelBasedIterativeRegression.setKernel(Kernel<? super InputType> kernel)
Sets the kernel to use.
|
void |
LocallyWeightedFunction.setKernel(Kernel<? super InputType> kernel)
Setter for kernel
|
void |
LocallyWeightedFunction.Learner.setKernel(Kernel<? super InputType> kernel)
Setter for kernel
|
void |
KernelWeightedRobustRegression.setKernelWeightingFunction(Kernel<? super OutputType> kernelWeightingFunction)
Getter for kernelWeightingFunction
|
Constructor and Description |
---|
KernelBasedIterativeRegression(Kernel<? super InputType> kernel)
Creates a new KernelBasedIterativeRegression with the given kernel.
|
KernelBasedIterativeRegression(Kernel<? super InputType> kernel,
double minSensitivity)
Creates a new KernelBasedIterativeRegression with the given kernel.
|
KernelBasedIterativeRegression(Kernel<? super InputType> kernel,
double minSensitivity,
int maxIterations)
Creates a new KernelBasedIterativeRegression with the given kernel and
maximum number of iterations.
|
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType,OutputType,?> iterationLearner,
Kernel<? super OutputType> kernelWeightingFunction)
Creates a new instance of RobustRegression
|
KernelWeightedRobustRegression(SupervisedBatchLearner<InputType,OutputType,?> iterationLearner,
Kernel<? super OutputType> kernelWeightingFunction,
int maxIterations,
double tolerance)
Creates a new instance of RobustRegression
|
Learner(Kernel<? super InputType> kernel,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Creates a new instance of LocallyWeightedFunction
|
LocallyWeightedFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> rawData,
SupervisedBatchLearner<InputType,OutputType,?> learner)
Evaluator that implements the concept of LocallyWeightedLearning.
|
Modifier and Type | Field and Description |
---|---|
protected Kernel<? super InputType> |
SuccessiveOverrelaxation.kernel
The kernel to use.
|
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
SequentialMinimalOptimization.getKernel() |
Kernel<? super InputType> |
SuccessiveOverrelaxation.getKernel()
Gets the kernel to use.
|
Modifier and Type | Method and Description |
---|---|
void |
SequentialMinimalOptimization.setKernel(Kernel<? super InputType> kernel)
Sets the kernel to use in training the SVM.
|
void |
SuccessiveOverrelaxation.setKernel(Kernel<? super InputType> kernel)
Sets the kernel to use.
|
Constructor and Description |
---|
SequentialMinimalOptimization(Kernel<? super InputType> kernel)
Creates a new instance of Sequential Minimal Optimization with the
given kernel.
|
SequentialMinimalOptimization(Kernel<? super InputType> kernel,
double maxPenalty,
double errorTolerance,
double effectiveZero,
int kernelCacheSize,
int maxIterations,
java.util.Random random)
Creates a new instance of Sequential Minimal Optimization with the
given kernel and random number generator.
|
SequentialMinimalOptimization(Kernel<? super InputType> kernel,
java.util.Random random)
Creates a new instance of Sequential Minimal Optimization with the
given kernel and random number generator.
|
SuccessiveOverrelaxation(Kernel<? super InputType> kernel)
Creates a new instance of
SuccessiveOverrelaxation . |
SuccessiveOverrelaxation(Kernel<? super InputType> kernel,
double maxWeight,
double overrelaxation,
double minChange,
int maxIterations)
Creates a new instance of
SuccessiveOverrelaxation . |
Modifier and Type | Field and Description |
---|---|
protected Kernel<? super InputType> |
KernelBinaryCategorizer.kernel
The internal kernel.
|
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
KernelBinaryCategorizer.getKernel() |
Modifier and Type | Method and Description |
---|---|
void |
KernelBinaryCategorizer.setKernel(Kernel<? super InputType> kernel)
Sets the internal kernel.
|
Constructor and Description |
---|
DefaultKernelBinaryCategorizer(Kernel<? super InputType> kernel)
Creates a new
DefaultKernelBinaryCategorizer with the given
kernel, no examples, and a zero bias. |
DefaultKernelBinaryCategorizer(Kernel<? super InputType> kernel,
java.util.Collection<DefaultWeightedValue<InputType>> examples,
double bias)
Creates a new
DefaultKernelBinaryCategorizer with the given
parameters. |
KernelBinaryCategorizer(Kernel<? super InputType> kernel)
Creates a new instance of KernelBinaryCategorizer with the given kernel.
|
KernelBinaryCategorizer(Kernel<? super InputType> kernel,
java.util.Collection<EntryType> examples,
double bias)
Creates a new instance of KernelBinaryCategorizer with the given kernel,
weighted examples, and bias.
|
Modifier and Type | Class and Description |
---|---|
class |
ExponentialKernel<InputType>
The
ExponentialKernel class implements a kernel that applies the
exponential function to the result of another kernel. |
class |
LinearKernel
The
LinearKernel class implements the most basic kernel: it just
does the actual inner product between two vectors. |
class |
NormalizedKernel<InputType>
The
NormalizedKernel class implements an Kernel
that returns a normalized value between 0.0 and 1.0 by normalizing the
results of a given kernel. |
class |
PolynomialKernel
The
PolynomialKernel class implements a kernel for two given
vectors that is the polynomial function:
(x dot y + c)^d d is the degree of the polynomial, which must be a positive integer. |
class |
ProductKernel<InputType>
The
ProductKernel class implements a kernel that takes the product
of applying multiple kernels to the same pair of inputs. |
class |
RadialBasisKernel
The
RadialBasisKernel implements the standard radial basis
kernel, which is:
exp( -||x - y||^2 / (2 * sigma^2) ) where sigma is the parameter that controls the bandwidth of the kernel. |
class |
ScalarFunctionKernel<InputType>
The
ScalarFunctionKernel class implements a kernel that applies a
scalar function two the two inputs to the kernel and then returns their
product. |
class |
SigmoidKernel
The
SigmoidKernel class implements a sigmoid kernel based on the
hyperbolic tangent. |
class |
SumKernel<InputType>
The
SumKernel class implements a kernel that adds together
the result of applying multiple kernels to the same pair of inputs. |
class |
VectorFunctionKernel
The
VectorFunctionKernel implements a kernel that makes use of a
vector function plus a kernel that operates on vectors. |
class |
WeightedKernel<InputType>
The
WeightedKernel class implements a kernel that takes another
kernel, evaluates it, and then the result is rescaled by a given weight. |
class |
ZeroKernel
The
ZeroKernel always returns zero. |
Modifier and Type | Field and Description |
---|---|
protected Kernel<? super InputType> |
DefaultKernelContainer.kernel
The internal kernel.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.Collection<? extends Kernel<? super InputType>> |
DefaultKernelsContainer.kernels
The collection of kernels in the container.
|
Modifier and Type | Method and Description |
---|---|
Kernel<? super InputType> |
DefaultKernelContainer.getKernel()
Gets the internal kernel.
|
Kernel<? super InputType> |
KernelContainer.getKernel()
Gets the kernel.
|
Modifier and Type | Method and Description |
---|---|
java.util.Collection<? extends Kernel<? super InputType>> |
DefaultKernelsContainer.getKernels()
Gets the collection of kernels.
|
Modifier and Type | Method and Description |
---|---|
static <ValueType> |
KernelUtil.norm2(ValueType value,
Kernel<? super ValueType> kernel)
Computes the 2-norm of the given value according to the given kernel.
|
static <ValueType> |
KernelUtil.norm2Squared(ValueType value,
Kernel<? super ValueType> kernel)
Computes the squared 2-norm of the given value according to the given
kernel.
|
void |
DefaultKernelContainer.setKernel(Kernel<? super InputType> kernel)
Sets the internal kernel.
|
Modifier and Type | Method and Description |
---|---|
void |
DefaultKernelsContainer.setKernels(java.util.Collection<? extends Kernel<? super InputType>> kernels)
Sets the collection of kernels.
|
Constructor and Description |
---|
DefaultKernelContainer(Kernel<? super InputType> kernel)
Creates a new instance of KernelContainer with the given kernel.
|
ExponentialKernel(Kernel<? super InputType> kernel)
Creates a new instance of ExponentialKernel.
|
KernelDistanceMetric(Kernel<? super InputType> kernel)
Creates a new instance of KernelDistanceMetric using the given kernel.
|
NormalizedKernel(Kernel<? super InputType> kernel)
Creates a new instance of NormalizedKernel using the given kernel.
|
VectorFunctionKernel(VectorFunction function,
Kernel<? super Vector> kernel)
Creates a new VectorFunctionKernel from the given function and kernel.
|
WeightedKernel(double weight,
Kernel<? super InputType> kernel)
Creates a new instance of WeightedKernel from the given weight and
kernel.
|
Constructor and Description |
---|
DefaultKernelsContainer(java.util.Collection<? extends Kernel<? super InputType>> kernels)
Creates a new instance of DefaultKernelsContainer.
|
ProductKernel(java.util.Collection<? extends Kernel<? super InputType>> kernels)
Creates a new instance of ProductKernel with the given collection of
kernels.
|
SumKernel(java.util.Collection<? extends Kernel<? super InputType>> kernels)
Creates a new instance of SumKernel with the given collection of
kernels.
|
Constructor and Description |
---|
KernelScalarFunction(Kernel<? super InputType> kernel)
Creates a new instance of KernelScalarFunction with the given kernel.
|
KernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias)
Creates a new instance of KernelScalarFunction with the given kernel,
weighted examples, and bias.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel and weighted examples.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel, weighted examples, and bias.
|
LocallyWeightedKernelScalarFunction(Kernel<? super InputType> kernel,
java.util.Collection<? extends WeightedValue<? extends InputType>> examples,
double bias,
double constantWeight,
double constantValue)
Creates a new instance of LocallyWeightedKernelScalarFunction with the
given kernel, weighted examples, and bias.
|
Constructor and Description |
---|
GaussianProcessRegression(Kernel<InputType> kernel,
double outputVariance)
Creates a new instance of GaussianProcessRegression
|