Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.statistics.montecarlo |
Provides Monte Carlo procedures for numerical integration and sampling.
|
gov.sandia.cognition.util |
Provides general utility classes.
|
Modifier and Type | Field and Description |
---|---|
protected java.util.ArrayList<DefaultWeightedValue<ObservationType>> |
ParallelBaumWelchAlgorithm.DistributionEstimatorTask.weightedValues
Weighted values for the PDF estimator.
|
Modifier and Type | Method and Description |
---|---|
static DefaultWeightedValue<LinearBinaryCategorizer> |
OnlineVotedPerceptron.getLastMember(WeightedBinaryEnsemble<Vectorizable,LinearBinaryCategorizer> ensemble)
Gets the last member in the ensemble.
|
Modifier and Type | Method and Description |
---|---|
KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> |
KernelAdatron.getResult() |
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Boolean>,DefaultWeightedValue<InputType>> |
KernelAdatron.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,DefaultWeightedValue<InputType>> |
KernelPerceptron.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected void |
KernelAdatron.setLearned(KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> result)
Sets the object currently being result.
|
protected void |
KernelPerceptron.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,? extends java.lang.Boolean>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
protected void |
KernelAdatron.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Boolean>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Double>,DefaultWeightedValue<InputType>> |
KernelBasedIterativeRegression.getSupportsMap()
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Method and Description |
---|---|
protected void |
KernelBasedIterativeRegression.setSupportsMap(java.util.LinkedHashMap<InputOutputPair<? extends InputType,java.lang.Double>,DefaultWeightedValue<InputType>> supportsMap)
Gets the mapping of examples to weight objects (support vectors).
|
Modifier and Type | Class and Description |
---|---|
protected class |
SuccessiveOverrelaxation.Entry
The
Entry class represents the data that the algorithm keeps
about each training example. |
Modifier and Type | Field and Description |
---|---|
protected KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> |
SuccessiveOverrelaxation.result
The result categorizer.
|
Modifier and Type | Method and Description |
---|---|
KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> |
SequentialMinimalOptimization.getResult() |
KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> |
SuccessiveOverrelaxation.getResult() |
Modifier and Type | Method and Description |
---|---|
protected void |
SuccessiveOverrelaxation.setResult(KernelBinaryCategorizer<InputType,DefaultWeightedValue<InputType>> result)
Sets the object currently being result.
|
Modifier and Type | Method and Description |
---|---|
protected DefaultPair<java.lang.Double,java.lang.Double> |
AbstractVectorThresholdMaximumGainLearner.computeBestGainAndThreshold(java.util.Collection<? extends InputOutputPair<? extends Vectorizable,OutputType>> data,
int dimension,
DefaultDataDistribution<OutputType> baseCounts,
java.util.ArrayList<DefaultWeightedValue<OutputType>> values)
Computes the best gain and threshold for a given dimension using the
computeSplitGain method for each potential split point of values for the
given dimension.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultWeightedValueDiscriminant<ValueType>
An implementation of
ValueDiscriminantPair that stores a double
as the discriminant. |
Modifier and Type | Method and Description |
---|---|
DefaultWeightedValue<InputType> |
DefaultKernelBinaryCategorizer.get(int i)
Gets the i-th example.
|
DefaultWeightedValue<InputType> |
DefaultKernelBinaryCategorizer.remove(int i)
Removes the i-th example.
|
Constructor and Description |
---|
DefaultKernelBinaryCategorizer(Kernel<? super InputType> kernel,
java.util.Collection<DefaultWeightedValue<InputType>> examples,
double bias)
Creates a new
DefaultKernelBinaryCategorizer with the given
parameters. |
Modifier and Type | Method and Description |
---|---|
static <ValueType> |
ImportanceSampling.sample(ProbabilityDensityFunction<ValueType> importanceDistribution,
Evaluator<ValueType,java.lang.Double> targetDistribution,
java.util.Random random,
int numSamples)
Importance sampling is a technique for estimating properties of
a target distribution, while only having samples generated from an
"importance" distribution rather than the target distribution.
|
Modifier and Type | Method and Description |
---|---|
java.util.ArrayList<DefaultWeightedValue<DataType>> |
ImportanceSampler.sample(Evaluator<? super DataType,java.lang.Double> targetFunction,
java.util.Random random,
int numSamples) |
Modifier and Type | Method and Description |
---|---|
DefaultWeightedValue<ValueType> |
DefaultWeightedValue.clone()
Creates a shallow copy of the WeightedValue.
|
static <ValueType> |
DefaultWeightedValue.create(ValueType value,
double weight)
Convenience method to create a new
WeightedValue . |