Package | Description |
---|---|
gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Field and Description |
---|---|
protected MultivariateGaussian |
MultivariateDecorrelator.gaussian
The underlying Gaussian.
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
MultivariateDecorrelator.getGaussian()
Gets the underlying multivariate Gaussian.
|
Modifier and Type | Method and Description |
---|---|
void |
MultivariateDecorrelator.setGaussian(MultivariateGaussian gaussian)
Sets the underlying multivariate Gaussian.
|
Constructor and Description |
---|
MultivariateDecorrelator(MultivariateGaussian gaussian)
Creates a new instance of MultivariateDecorrelator with the given
multivariate Gaussian.
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
AbstractConfidenceWeightedBinaryCategorizer.createWeightDistribution() |
MultivariateGaussian |
ConfidenceWeightedBinaryCategorizer.createWeightDistribution()
Creates a multivariate Gaussian distribution that represents the
distribution of weight vectors that the algorithm has learned.
|
Modifier and Type | Field and Description |
---|---|
protected MultivariateGaussian |
BayesianLinearRegression.weightPrior
Prior distribution of the weights, typically a zero-mean,
diagonal-variance distribution.
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
ExtendedKalmanFilter.createInitialLearnedObject() |
MultivariateGaussian |
KalmanFilter.createInitialLearnedObject() |
MultivariateGaussian |
BayesianLinearRegression.getWeightPrior()
Getter for weightPrior
|
MultivariateGaussian |
BayesianRobustLinearRegression.getWeightPrior()
Getter for weightPrior
|
MultivariateGaussian |
GaussianProcessRegression.learn(java.util.Collection<? extends InputOutputPair<? extends InputType,java.lang.Double>> data) |
Modifier and Type | Method and Description |
---|---|
void |
AbstractKalmanFilter.computeMeasurementBelief(MultivariateGaussian belief,
Vector innovation,
Matrix C)
Updates the measurement belief by computing the Kalman gain and
incorporating the innovation into the estimate
|
void |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic.create(MultivariateGaussian distribution) |
BayesianLinearRegression.PredictiveDistribution |
BayesianLinearRegression.createPredictiveDistribution(MultivariateGaussian posterior)
Creates the predictive distribution of outputs given the weight posterior
|
GaussianProcessRegression.PredictiveDistribution |
GaussianProcessRegression.createPredictiveDistribution(MultivariateGaussian posterior,
java.util.ArrayList<InputType> inputs)
Creates the predictive distribution for future points.
|
abstract void |
AbstractKalmanFilter.measure(MultivariateGaussian belief,
Vector observation)
Integrates a measurement into the system, refining the current
belief of the state of the system
|
void |
ExtendedKalmanFilter.measure(MultivariateGaussian belief,
Vector observation) |
void |
KalmanFilter.measure(MultivariateGaussian belief,
Vector observation) |
abstract void |
AbstractKalmanFilter.predict(MultivariateGaussian belief)
Creates a prediction of the system's next state given the current
belief state
|
void |
ExtendedKalmanFilter.predict(MultivariateGaussian belief) |
void |
KalmanFilter.predict(MultivariateGaussian belief) |
void |
BayesianLinearRegression.setWeightPrior(MultivariateGaussian weightPrior)
Setter for weightPrior
|
void |
BayesianRobustLinearRegression.setWeightPrior(MultivariateGaussian weightPrior)
Setter for weightPrior
|
void |
AbstractKalmanFilter.update(MultivariateGaussian belief,
Vector observation) |
Constructor and Description |
---|
BayesianLinearRegression(double outputVariance,
MultivariateGaussian weightPrior)
Creates a new instance of BayesianLinearRegression
|
BayesianRobustLinearRegression(InverseGammaDistribution outputVariance,
MultivariateGaussian weightPrior)
Creates a new instance of BayesianRobustLinearRegression
|
IncrementalEstimator(double outputVariance,
MultivariateGaussian weightPrior)
Creates a new instance of IncrementalEstimator
|
IncrementalEstimator(InverseGammaDistribution outputVariance,
MultivariateGaussian weightPrior)
Creates a new instance of IncrementalEstimator
|
PredictiveDistribution(MultivariateGaussian posterior)
Creates a new instance of PredictiveDistribution
|
PredictiveDistribution(MultivariateGaussian posterior,
java.util.ArrayList<InputType> inputs)
Creates a new instance of PredictiveDistribution
|
SufficientStatistic(MultivariateGaussian prior)
Creates a new instance of SufficientStatistic
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
MultivariateGaussianMeanBayesianEstimator.createConditionalDistribution(Vector parameter) |
MultivariateGaussian |
MultivariateGaussianMeanBayesianEstimator.createPredictiveDistribution(MultivariateGaussian posterior) |
Modifier and Type | Method and Description |
---|---|
double |
MultivariateGaussianMeanBayesianEstimator.computeEquivalentSampleSize(MultivariateGaussian belief) |
MultivariateGaussianMeanBayesianEstimator.Parameter |
MultivariateGaussianMeanBayesianEstimator.createParameter(MultivariateGaussian conditional,
MultivariateGaussian prior) |
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter |
MultivariateGaussianMeanCovarianceBayesianEstimator.createParameter(MultivariateGaussian conditional,
NormalInverseWishartDistribution prior) |
MultivariateGaussian |
MultivariateGaussianMeanBayesianEstimator.createPredictiveDistribution(MultivariateGaussian posterior) |
void |
MultivariateGaussianMeanBayesianEstimator.update(MultivariateGaussian target,
java.lang.Iterable<? extends Vector> data) |
void |
MultivariateGaussianMeanBayesianEstimator.update(MultivariateGaussian updater,
Vector data) |
Constructor and Description |
---|
MultivariateGaussianMeanBayesianEstimator(Matrix knownCovarianceInverse,
MultivariateGaussian belief)
Creates a new instance of MultivariateGaussianMeanBayesianEstimator
|
MultivariateGaussianMeanBayesianEstimator(MultivariateGaussian conditional,
MultivariateGaussian prior)
Creates a new instance of PoissonBayesianEstimator
|
MultivariateGaussianMeanCovarianceBayesianEstimator(MultivariateGaussian conditional,
NormalInverseWishartDistribution prior)
Creates a new instance
|
Parameter(MultivariateGaussian conditional,
MultivariateGaussian prior)
Creates a new instance
|
Parameter(MultivariateGaussian conditional,
NormalInverseWishartDistribution prior)
Creates a new instance
|
Constructor and Description |
---|
MultivariateGaussianMeanBayesianEstimator(BayesianParameter<Vector,MultivariateGaussian,MultivariateGaussian> parameter)
Creates a new instance
|
MultivariateGaussianMeanBayesianEstimator(BayesianParameter<Vector,MultivariateGaussian,MultivariateGaussian> parameter)
Creates a new instance
|
MultivariateGaussianMeanCovarianceBayesianEstimator(BayesianParameter<Matrix,MultivariateGaussian,NormalInverseWishartDistribution> parameter)
Creates a new instance
|
Modifier and Type | Class and Description |
---|---|
static class |
MultivariateGaussian.PDF
PDF of a multivariate Gaussian
|
Modifier and Type | Field and Description |
---|---|
protected MultivariateGaussian |
MultivariateGaussianInverseGammaDistribution.gaussian
Gaussian component
|
protected MultivariateGaussian |
NormalInverseWishartDistribution.gaussian
Generates the mean, given the covariance from the inverseWishart.
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
MultivariateGaussian.clone() |
MultivariateGaussian |
MultivariateGaussian.convolve(MultivariateGaussian other)
Convolves this Gaussian with the other Gaussian.
|
MultivariateGaussian |
MultivariateGaussianInverseGammaDistribution.getGaussian()
Getter for gaussian
|
MultivariateGaussian |
NormalInverseWishartDistribution.getGaussian()
Getter for gaussian.
|
MultivariateGaussian |
MultivariateGaussian.plus(MultivariateGaussian other)
Adds two MultivariateGaussian random variables together and returns the
resulting MultivariateGaussian
|
MultivariateGaussian |
MultivariateGaussian.scale(Matrix premultiplyMatrix)
Scales the MultivariateGaussian by premultiplying by the given Matrix
|
MultivariateGaussian |
MultivariateGaussian.times(MultivariateGaussian other)
Multiplies this Gaussian with the other Gaussian.
|
Modifier and Type | Method and Description |
---|---|
MultivariateGaussian |
MultivariateGaussian.convolve(MultivariateGaussian other)
Convolves this Gaussian with the other Gaussian.
|
void |
MultivariateGaussian.SufficientStatistic.create(MultivariateGaussian distribution) |
void |
MultivariateGaussian.SufficientStatisticCovarianceInverse.create(MultivariateGaussian distribution) |
MultivariateGaussian |
MultivariateGaussian.plus(MultivariateGaussian other)
Adds two MultivariateGaussian random variables together and returns the
resulting MultivariateGaussian
|
void |
MultivariateGaussianInverseGammaDistribution.setGaussian(MultivariateGaussian gaussian)
Setter for gaussian
|
void |
NormalInverseWishartDistribution.setGaussian(MultivariateGaussian gaussian)
Setter for gaussian
|
MultivariateGaussian |
MultivariateGaussian.times(MultivariateGaussian other)
Multiplies this Gaussian with the other Gaussian.
|
Constructor and Description |
---|
MultivariateGaussian(MultivariateGaussian other)
Creates a new instance of MultivariateGaussian.
|
MultivariateGaussianInverseGammaDistribution(MultivariateGaussian gaussian,
InverseGammaDistribution inverseGamma)
Creates a new instance of MultivariateGaussianInverseGammaDistribution
|
NormalInverseWishartDistribution(MultivariateGaussian gaussian,
InverseWishartDistribution inverseWishart,
double covarianceDivisor)
Creates a new instance of NormalInverseWishartDistribution
|
PDF(MultivariateGaussian... distributions)
Creates a new instance of MixtureOfGaussians
|
PDF(MultivariateGaussian other)
Creates a new instance of MultivariateGaussian.
|
PDF(MultivariateGaussian gaussian,
InverseWishartDistribution inverseWishart,
double covarianceDivisor)
Creates a new instance of NormalInverseWishartDistribution
|
Constructor and Description |
---|
PDF(java.util.Collection<? extends MultivariateGaussian> distributions)
Creates a new instance of MixtureOfGaussians
|
PDF(java.util.Collection<? extends MultivariateGaussian> distributions,
double[] priorWeights)
Creates a new instance of LinearMixtureModel
|