| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.clustering | Provides clustering algorithms. | 
| gov.sandia.cognition.learning.algorithm.clustering.cluster | Provides implementations of different types of clusters. | 
| gov.sandia.cognition.learning.algorithm.clustering.divergence | Provides divergence functions for use in clustering. | 
| gov.sandia.cognition.learning.algorithm.clustering.initializer | Provides implementations of methods for selecting initial clusters. | 
| gov.sandia.cognition.learning.algorithm.nearest | Provides algorithms for Nearest-Neighbor memory-based functions. | 
| gov.sandia.cognition.learning.function.distance | Provides distance functions. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AffinityPropagation<DataType>The  AffinityPropagationalgorithm requires three parameters:
 a divergence function, a value to use for self-divergence, and a damping
 factor (called lambda in the paper; 0.5 is the default). | 
| class  | AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>The  AgglomerativeClustererimplements an agglomerative clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
| class  | KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>The  KMeansClustererclass implements the standard k-means
 (k-centroids) clustering algorithm. | 
| class  | KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>Creates a k-means clustering algorithm that removes clusters that do
 not have sufficient membership to pass a simple statistical significance
 test. | 
| class  | MiniBatchKMeansClusterer<DataType extends Vector>Approximates k-means clustering by working on random subsets of the
 data. | 
| class  | OptimizedKMeansClusterer<DataType>This class implements an optimized version of the k-means algorithm that
 makes use of the triangle inequality to compute the same answer as k-means
 while using less distance calculations. | 
| class  | ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>This is a parallel implementation of the k-means clustering algorithm. | 
| class  | PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>The  PartitionalClustererimplements a partitional clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | MedoidClusterCreator<DataType>The  MedoidClusterCreatorclass creates aCentroidClusterat the sample that minimizes the sum 
 of the divergence to the objects assigned to the cluster. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The AbstractClusterToClusterDivergenceFunction class is an abstract class
 that helps out implementations of ClusterToClusterDivergenceFunction
 implementations by holding a DivergenceFunction between elements of a
 cluster. | 
| class  | CentroidClusterDivergenceFunction<DataType>The CentroidClusterDivergenceFunction class implements a divergence function
 between a cluster and an object by computing the divergence between the
 center of the cluster and the object. | 
| class  | ClusterCentroidDivergenceFunction<DataType>The ClusterCentroidDivergenceFunction class implements the distance 
 between two clusters by computing the distance between the cluster's 
 centroid. | 
| class  | ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterCompleteLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. | 
| class  | ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterMeanLinkDivergenceFunction class implements the mean linkage 
 distance metric between two clusters. | 
| class  | ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterSingleLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>Implements an abstract FixedClusterInitializer that works by using the
 minimum distance from a point to the cluster. | 
| class  | DistanceSamplingClusterInitializer<ClusterType extends Cluster<DataType>,DataType>Implements  FixedClusterInitializerthat initializes clusters by
 first selecting a random point for the first cluster and then randomly
 sampling each successive cluster based on the squared minimum distance from
 the point to the existing selected clusters. | 
| class  | GreedyClusterInitializer<ClusterType extends Cluster<DataType>,DataType>Implements a FixedClusterInitializer that greedily attempts to create the
 initial clusters. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractKNearestNeighbor<InputType,OutputType>Partial implementation of KNearestNeighbor. | 
| class  | AbstractNearestNeighbor<InputType,OutputType>Partial implementation of KNearestNeighbor. | 
| class  | KNearestNeighborExhaustive<InputType,OutputType>A generic k-nearest-neighbor classifier. | 
| static class  | KNearestNeighborExhaustive.Learner<InputType,OutputType>This is a BatchLearner interface for creating a new KNearestNeighborExhaustive
 from a given dataset, simply a pass-through to the constructor of
 KNearestNeighborExhaustive | 
| class  | KNearestNeighborKDTree<InputType extends Vectorizable,OutputType>A KDTree-based implementation of the k-nearest neighbor algorithm. | 
| static class  | KNearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>This is a BatchLearner interface for creating a new KNearestNeighbor
 from a given dataset, simply a pass-through to the constructor of
 KNearestNeighbor | 
| class  | NearestNeighborExhaustive<InputType,OutputType>The  NearestNeighborExhaustiveclass implements a simple evaluator
 that looks up a given input object in a collection of input-output pair
 examples and returns the output associated with the most similar input. | 
| static class  | NearestNeighborExhaustive.Learner<InputType,OutputType>The  NearestNeighborExhaustive.Learnerclass implements a batch learner for
 theNearestNeighborExhaustiveclass. | 
| class  | NearestNeighborKDTree<InputType extends Vectorizable,OutputType>A KDTree-based implementation of the nearest neighbor algorithm. | 
| static class  | NearestNeighborKDTree.Learner<InputType extends Vectorizable,OutputType>This is a BatchLearner interface for creating a new NearestNeighbor
 from a given dataset, simply a pass-through to the constructor of
 NearestNeighbor | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | DefaultDivergenceFunctionContainer<FirstType,SecondType>The  DefaultDivergenceFunctionContainerclass implements an object
 that holds a divergence function. | 
| class  | DivergencesEvaluator<InputType,ValueType>Evaluates the divergence (distance) between an input and a list of values,
 storing the resulting divergence values in a vector. | 
| static class  | DivergencesEvaluator.Learner<DataType,InputType,ValueType>A learner adapter for the  DivergencesEvaluator. |