| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.bayes | 
 Provides algorithms for computing Bayesian categorizers. 
 | 
| gov.sandia.cognition.statistics | 
 Provides the inheritance hierarchy for general statistical methods and distributions. 
 | 
| gov.sandia.cognition.statistics.distribution | 
 Provides statistical distributions. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected DistributionEstimator<? super java.lang.Double,? extends DistributionType> | 
VectorNaiveBayesCategorizer.Learner.distributionEstimator
The distributionLearner for the distribution of each dimension of each category. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
DistributionEstimator<? super java.lang.Double,? extends DistributionType> | 
VectorNaiveBayesCategorizer.Learner.getDistributionEstimator()
Gets the estimation method for the distribution of each dimension of
 each category. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
VectorNaiveBayesCategorizer.Learner.setDistributionEstimator(DistributionEstimator<? super java.lang.Double,? extends DistributionType> distributionEstimator)
Sets the estimation method for the distribution of each dimension of
 each category. 
 | 
| Constructor and Description | 
|---|
Learner(DistributionEstimator<? super java.lang.Double,? extends DistributionType> distributionEstimator)
Creates a new  
BatchLearner with the given distribution
 estimator. | 
| Modifier and Type | Method and Description | 
|---|---|
DistributionEstimator<DataType,? extends DataDistribution<DataType>> | 
DataDistribution.getEstimator()  | 
DistributionEstimator<ObservationType,? extends DistributionType> | 
EstimableDistribution.getEstimator()
Gets an estimator associated with this distribution. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
BetaBinomialDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta-binomial distribution using the matching
 of moments, not maximum likelihood. 
 | 
static class  | 
BetaDistribution.MomentMatchingEstimator
Estimates the parameters of a Beta distribution using the matching
 of moments, not maximum likelihood. 
 | 
static class  | 
BinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution 
 | 
static class  | 
DefaultDataDistribution.Estimator<KeyType>
Estimator for a DefaultDataDistribution 
 | 
static class  | 
ExponentialDistribution.MaximumLikelihoodEstimator
Creates a ExponentialDistribution from data 
 | 
static class  | 
GammaDistribution.MomentMatchingEstimator
Computes the parameters of a Gamma distribution by the
 Method of Moments 
 | 
static class  | 
GeometricDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution 
 | 
static class  | 
LaplaceDistribution.MaximumLikelihoodEstimator
Estimates the ML parameters of a Laplace distribution from a
 Collection of Numbers. 
 | 
static class  | 
LogNormalDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a log-normal distribution. 
 | 
static class  | 
MixtureOfGaussians.EMLearner
An Expectation-Maximization based "soft" assignment learner. 
 | 
static class  | 
MixtureOfGaussians.Learner
A hard-assignment learner for a MixtureOfGaussians 
 | 
static class  | 
MultivariateGaussian.MaximumLikelihoodEstimator
Computes the Maximum Likelihood Estimate of the MultivariateGaussian
 given a set of Vectors 
 | 
static class  | 
NegativeBinomialDistribution.MaximumLikelihoodEstimator
Maximum likelihood estimator of the distribution 
 | 
static class  | 
PoissonDistribution.MaximumLikelihoodEstimator
Creates a PoissonDistribution from data 
 | 
static class  | 
ScalarDataDistribution.Estimator
Estimator for a ScalarDataDistribution 
 | 
static class  | 
ScalarMixtureDensityModel.EMLearner
An EM learner that estimates a mixture model from data 
 | 
static class  | 
StudentTDistribution.MaximumLikelihoodEstimator
Estimates the parameters of the Student-t distribution from the given
 data, where the degrees of freedom are estimated from the Kurtosis
 of the sample data. 
 | 
static class  | 
UniformDistribution.MaximumLikelihoodEstimator
Maximum Likelihood Estimator of a uniform distribution. 
 | 
static class  | 
UniformIntegerDistribution.MaximumLikelihoodEstimator
Implements a maximum likelihood estimator for the discrete uniform
 distribution. 
 | 
static class  | 
UnivariateGaussian.MaximumLikelihoodEstimator
Creates a UnivariateGaussian from data 
 | 
| Modifier and Type | Method and Description | 
|---|---|
DistributionEstimator<KeyType,? extends DataDistribution<KeyType>> | 
DefaultDataDistribution.getEstimator()  |