@PublicationReference(author={"Ram C. Tripathi","Ramesh C. Gupta","John Gurland"}, title="Estimation of parameters in the beta binomial model", type=Journal, publication="Annals of the Institute of Statistical Mathematics", year=1994, pages={317,331}, notes="Equation 2.11") public static class BetaBinomialDistribution.MomentMatchingEstimator extends AbstractCloneableSerializable implements DistributionEstimator<java.lang.Number,BetaBinomialDistribution>
| Constructor and Description |
|---|
MomentMatchingEstimator()
Default constructor
|
| Modifier and Type | Method and Description |
|---|---|
BetaBinomialDistribution |
learn(java.util.Collection<? extends java.lang.Number> data)
The
learn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm. |
static BetaBinomialDistribution.PMF |
learn(int N,
double mean,
double variance)
Computes the Beta-Binomial distribution describes by the given moments
|
cloneequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclonepublic BetaBinomialDistribution learn(java.util.Collection<? extends java.lang.Number> data)
BatchLearnerlearn method creates an object of ResultType using
data of type DataType, using some form of "learning" algorithm.learn in interface BatchLearner<java.util.Collection<? extends java.lang.Number>,BetaBinomialDistribution>data - The data that the learning algorithm will use to create an
object of ResultType.public static BetaBinomialDistribution.PMF learn(int N, double mean, double variance)
N - Number of trialsmean - Mean of the distributionvariance - Variance of the distribution