@PublicationReference(author="William M. Bolstad", title="Introduction to Bayesian Statistics: Second Edition", type=Book, year=2007, pages=143) public class BernoulliBayesianEstimator extends AbstractConjugatePriorBayesianEstimator<java.lang.Number,java.lang.Double,BernoulliDistribution,BetaDistribution>
| Modifier and Type | Class and Description |
|---|---|
static class |
BernoulliBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
parameter| Modifier | Constructor and Description |
|---|---|
|
BernoulliBayesianEstimator()
Creates a new instance of BernoulliBayesianEstimator
|
protected |
BernoulliBayesianEstimator(BayesianParameter<java.lang.Double,BernoulliDistribution,BetaDistribution> parameter)
Creates a new instance of BernoulliBayesianEstimator
|
|
BernoulliBayesianEstimator(BernoulliDistribution conditional,
BetaDistribution prior)
Creates a new instance of BernoulliBayesianEstimator
|
|
BernoulliBayesianEstimator(BetaDistribution prior)
Creates a new instance of BernoulliBayesianEstimator
|
| Modifier and Type | Method and Description |
|---|---|
double |
computeEquivalentSampleSize(BetaDistribution belief)
Computes the equivalent sample size of using the given prior.
|
BernoulliBayesianEstimator.Parameter |
createParameter(BernoulliDistribution conditional,
BetaDistribution prior)
Creates a parameter linking the conditional and prior distributions
|
void |
update(BetaDistribution updater,
java.lang.Number data)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, createConditionalDistribution, createInitialLearnedObject, getInitialBelief, getParameter, setParameterlearn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnupdatepublic BernoulliBayesianEstimator()
public BernoulliBayesianEstimator(BetaDistribution prior)
prior - Default conjugate prior.public BernoulliBayesianEstimator(BernoulliDistribution conditional, BetaDistribution prior)
prior - Default conjugate prior.conditional - Conditional distribution of the conjugate prior.protected BernoulliBayesianEstimator(BayesianParameter<java.lang.Double,BernoulliDistribution,BetaDistribution> parameter)
parameter - Bayesian hyperparameter relationship between the conditional
distribution and the conjugate prior distribution.public BernoulliBayesianEstimator.Parameter createParameter(BernoulliDistribution conditional, BetaDistribution prior)
ConjugatePriorBayesianEstimatorconditional - Distribution from which observations are generatedprior - Distribution that generates parameters for the conditionalpublic void update(BetaDistribution updater, java.lang.Number data)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.updater - The object to update.data - The new data for the learning algorithm to use to update
the object.public double computeEquivalentSampleSize(BetaDistribution belief)
ConjugatePriorBayesianEstimatorbelief - Prior belief to measure.