| Package | Description |
|---|---|
| gov.sandia.cognition.data.convert.vector |
Provides utilities for doing data type conversion with vectors.
|
| gov.sandia.cognition.framework.learning.converter |
Provides implementations of
CogxelConverters. |
| gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
| gov.sandia.cognition.learning.algorithm.tree |
Provides decision tree learning algorithms.
|
| gov.sandia.cognition.learning.data.feature |
Provides data feature extractors.
|
| gov.sandia.cognition.learning.function.categorization |
Provides functions that output a discrete set of categories.
|
| gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
| gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
| gov.sandia.cognition.math.matrix |
Provides interfaces and classes for linear algebra.
|
| gov.sandia.cognition.math.matrix.custom |
Provides a custom linear algebra package implementation for both dense
and sparse classes.
|
| gov.sandia.cognition.math.matrix.mtj |
Provides a linear algebra package implementation wrapper using the Matrix
Toolkits for Java (MTJ) library.
|
| gov.sandia.cognition.text.term.vector |
Provides methods for handling documents represented as term vectors.
|
| gov.sandia.cognition.text.term.vector.weighter.global |
Provides global term weighting algorithms.
|
| gov.sandia.cognition.text.term.vector.weighter.local |
Provides local term weighting algorithms.
|
| gov.sandia.cognition.text.topic |
Provides topic modeling algorithms.
|
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
AbstractToVectorEncoder.vectorFactory
The vector factory to use to create new vectors.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
AbstractToVectorEncoder.getVectorFactory() |
| Modifier and Type | Method and Description |
|---|---|
void |
AbstractToVectorEncoder.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory used by this encoder.
|
| Constructor and Description |
|---|
AbstractToVectorEncoder(VectorFactory<?> vectorFactory)
Creates a new
AbstractToVectorEncoder with the given vector
factory. |
| Constructor and Description |
|---|
CogxelVectorConverter(java.lang.Iterable<SemanticLabel> labels,
SemanticIdentifierMap semanticIdentifierMap,
VectorFactory<?> vectorFactory,
CogxelFactory cogxelFactory)
Creates a new CogxelVectorConverter.
|
CogxelVectorConverter(SemanticLabel[] labels,
SemanticIdentifierMap semanticIdentifierMap,
VectorFactory<?> vectorFactory,
CogxelFactory cogxelFactory)
Creates a new CogxelVectorConverter
|
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
AbstractOnlineLinearBinaryCategorizerLearner.vectorFactory
The factory to create weight vectors.
|
protected VectorFactory<?> |
BatchMultiPerceptron.vectorFactory
The factory to create weight vectors.
|
protected VectorFactory<?> |
OnlineMultiPerceptron.vectorFactory
The factory to create weight vectors.
|
protected VectorFactory<?> |
OnlineVotedPerceptron.vectorFactory
The factory to create weight vectors.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
AbstractOnlineLinearBinaryCategorizerLearner.getVectorFactory()
Gets the VectorFactory used to create the weight vector.
|
VectorFactory<?> |
BatchMultiPerceptron.getVectorFactory()
Gets the VectorFactory used to create the weight vector.
|
VectorFactory<?> |
OnlineMultiPerceptron.getVectorFactory()
Gets the VectorFactory used to create the weight vector.
|
VectorFactory<?> |
OnlineVotedPerceptron.getVectorFactory()
Gets the VectorFactory used to create the weight vector.
|
VectorFactory<?> |
Perceptron.getVectorFactory() |
| Modifier and Type | Method and Description |
|---|---|
LinearBinaryCategorizer |
LinearizableBinaryCategorizerOnlineLearner.createInitialLinearLearnedObject(VectorFactory<?> vectorFactory)
Creates the initial learned object.
|
SupervisedIncrementalLearner<Vectorizable,java.lang.Boolean,LinearBinaryCategorizer> |
LinearizableBinaryCategorizerOnlineLearner.createLinearLearner(VectorFactory<?> vectorFactory)
Creates a new linear learner using the standard learning interfaces
based on this learner and its parameters.
|
void |
AbstractOnlineLinearBinaryCategorizerLearner.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the VectorFactory used to create the weight vector.
|
void |
BatchMultiPerceptron.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the VectorFactory used to create the weight vector.
|
void |
OnlineMultiPerceptron.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the VectorFactory used to create the weight vector.
|
void |
OnlineVotedPerceptron.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the VectorFactory used to create the weight vector.
|
void |
Perceptron.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the VectorFactory used to create the weight vector.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
InputOutputPair<? extends Vectorizable,java.lang.Boolean> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
java.lang.Iterable<? extends InputOutputPair<? extends Vectorizable,java.lang.Boolean>> data,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
Vectorizable input,
boolean output,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
void |
LinearizableBinaryCategorizerOnlineLearner.update(LinearBinaryCategorizer target,
Vectorizable input,
java.lang.Boolean output,
VectorFactory<?> vectorFactory)
Performs a linear incremental update step on the given object using the
given supervised data.
|
| Constructor and Description |
|---|
AbstractKernelizableBinaryCategorizerOnlineLearner(VectorFactory<?> vectorFactory)
Creates a new
AbstractKernelizableBinaryCategorizerOnlineLearner
with the given vector factory. |
AbstractLinearCombinationOnlineLearner(boolean updateBias,
VectorFactory<?> vectorFactory)
Creates a new
AbstractLinearCombinationOnlineLearner with
the given parameters. |
AbstractOnlineLinearBinaryCategorizerLearner(VectorFactory<?> vectorFactory)
Creates a new
AbstractOnlineLinearBinaryCategorizerLearner with
the given vector factory. |
AbstractSoftMargin(double aggressiveness,
VectorFactory<?> vectorFactory)
Creates a new
AbstractSoftMargin with the given parameters. |
AggressiveRelaxedOnlineMaximumMarginAlgorithm(VectorFactory<?> vectorFactory)
Creates a new
AggressiveRelaxedOnlineMaximumMarginAlgorithm with
the given vector factory. |
BatchMultiPerceptron(int maxIterations,
double minMargin,
VectorFactory<?> vectorFactory)
Creates a new
BatchMultiPerceptron with the given parameters. |
LinearSoftMargin(double aggressiveness,
VectorFactory<?> vectorFactory)
Creates a new
LinearSoftMargin with the given parameters. |
OnlineBinaryMarginInfusedRelaxedAlgorithm(double minMargin,
VectorFactory<?> vectorFactory)
Creates a new
OnlineBinaryMarginInfusedRelaxedAlgorithm with
the new minimum margin. |
OnlineMultiPerceptron(double minMargin,
VectorFactory<?> vectorFactory)
Creates a new
OnlineMultiPerceptron with the
given minimum margin and backing vector factory. |
OnlinePassiveAggressivePerceptron(VectorFactory<?> vectorFactory)
Creates a new
OnlinePassiveAggressivePerceptron with the given
vector factory. |
OnlinePerceptron(VectorFactory<?> vectorFactory)
Creates a new
OnlinePerceptron with the given vector factory. |
OnlineRampPassiveAggressivePerceptron(double aggressiveness,
VectorFactory<?> vectorFactory)
Creates a new
OnlineRampPassiveAggressivePerceptron with the given parameters. |
OnlineShiftingPerceptron(double lambda,
VectorFactory<?> vectorFactory)
Creates a new
OnlineShiftingPerceptron with the given parameters. |
OnlineVotedPerceptron(VectorFactory<?> vectorFactory)
Creates a new
OnlinePerceptron with the given vector factory. |
Perceptron(int maxIterations,
double marginPositive,
double marginNegative,
VectorFactory<?> vectorFactory)
Creates a new instance of Perceptron with the given parameters
|
ProportionalUpdate(double minMargin,
VectorFactory<?> vectorFactory)
Creates a new
OnlineMultiPerceptron.ProportionalUpdate with the
given minimum margin and backing vector factory. |
QuadraticSoftMargin(double aggressiveness,
VectorFactory<?> vectorFactory)
Creates a new
QuadraticSoftMargin with the given parameters. |
RelaxedOnlineMaximumMarginAlgorithm(VectorFactory<?> vectorFactory)
Creates a new
RelaxedOnlineMaximumMarginAlgorithm with
the given vector factory. |
UniformUpdate(double minMargin,
VectorFactory<?> vectorFactory)
Creates a new
OnlineMultiPerceptron.UniformUpdate with the
given minimum margin and backing vector factory. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<? extends Vector> |
RandomSubVectorThresholdLearner.vectorFactory
The vector factory to use.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<? extends Vector> |
RandomSubVectorThresholdLearner.getVectorFactory()
Gets the vector factory.
|
| Modifier and Type | Method and Description |
|---|---|
void |
RandomSubVectorThresholdLearner.setVectorFactory(VectorFactory<? extends Vector> vectorFactory)
Sets the vector factory.
|
| Constructor and Description |
|---|
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
int[] dimensionsToConsider,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner. |
RandomSubVectorThresholdLearner(DeciderLearner<Vectorizable,OutputType,java.lang.Boolean,VectorElementThresholdCategorizer> subLearner,
double percentToSample,
java.util.Random random,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
RandomSubVectorThresholdLearner. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
FeatureHashing.vectorFactory
Vector factory to use.
|
protected VectorFactory<?> |
RandomSubspace.vectorFactory
The vector factory for the sub vector evaluator to use.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
FeatureHashing.getVectorFactory() |
VectorFactory<? extends Vector> |
RandomSubspace.getVectorFactory() |
| Modifier and Type | Method and Description |
|---|---|
void |
FeatureHashing.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory to use.
|
void |
RandomSubspace.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory to use.
|
| Constructor and Description |
|---|
FeatureHashing(int outputDimensionality,
HashFunction hashFunction,
VectorFactory<?> vectorFactory)
Creates a new
FeatureHashing with the given parameters. |
RandomSubspace(int size,
java.util.Random random,
VectorFactory<?> vectorFactory)
Creates a new
RandomSubspace with the given parameters. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
WinnerTakeAllCategorizer.Learner.vectorFactory
The vector factory used.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
WinnerTakeAllCategorizer.Learner.getVectorFactory()
Gets the vector factory.
|
| Modifier and Type | Method and Description |
|---|---|
void |
WinnerTakeAllCategorizer.Learner.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory.
|
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
DivergencesEvaluator.Learner.vectorFactory
The vector factory to use.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<? extends Vector> |
DivergencesEvaluator.Learner.getVectorFactory() |
| Modifier and Type | Method and Description |
|---|---|
void |
DivergencesEvaluator.Learner.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory to use.
|
| Constructor and Description |
|---|
DivergencesEvaluator(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
java.util.Collection<ValueType> values,
VectorFactory<?> vectorFactory)
Creates a new
DivergencesEvaluator with the given divergence
and values. |
Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
VectorFactory<?> vectorFactory)
Creates a new
DivergenceFunction.Learner with the given
properties. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<?> |
VectorizableVectorConverterWithBias.vectorFactory
The factory used to create the vector.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
VectorizableVectorConverterWithBias.getVectorFactory()
Gets the vector factory used to create the vector with the bias.
|
| Modifier and Type | Method and Description |
|---|---|
void |
VectorizableVectorConverterWithBias.setVectorFactory(VectorFactory<?> vectorFactory)
Sets the vector factory used to create the vector with the bias.
|
| Constructor and Description |
|---|
SubVectorEvaluator(int inputDimensionality,
int[] subIndices,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
SubVectorEvaluator with the given parameters. |
VectorizableVectorConverterWithBias(VectorFactory<?> vectorFactory)
Creates a new instance of
VectorizableVectorConverterWithBias. |
| Modifier and Type | Class and Description |
|---|---|
class |
SparseVectorFactory<VectorType extends Vector>
Abstract factory class for creating sparse vectors.
|
| Modifier and Type | Field and Description |
|---|---|
protected static VectorFactory<? extends Vector> |
VectorFactory.DEFAULT_DENSE_INSTANCE
The default
VectorFactory instance. |
protected VectorFactory<? extends Vector> |
DefaultVectorFactoryContainer.vectorFactory
The vector factory used to create new vectors.
|
| Modifier and Type | Method and Description |
|---|---|
static VectorFactory<? extends Vector> |
VectorFactory.getDefault()
Gets the default implementation of the
VectorFactory. |
static VectorFactory<? extends Vector> |
VectorFactory.getDenseDefault()
Gets the default implementation of
VectorFactory for dense
vectors. |
VectorFactory<? extends Vector> |
DefaultVectorFactoryContainer.getVectorFactory()
Gets the vector factory the object to use to create new vectors.
|
VectorFactory<?> |
Vector.getVectorFactory()
Gets a vector factory associated with this kind of vector.
|
VectorFactory<? extends Vector> |
VectorFactoryContainer.getVectorFactory()
Gets the vector factory the object to use to create new vectors.
|
| Modifier and Type | Method and Description |
|---|---|
void |
DefaultVectorFactoryContainer.setVectorFactory(VectorFactory<? extends Vector> vectorFactory)
Sets the vector factory for the object to use to create new vectors.
|
| Constructor and Description |
|---|
DefaultVectorFactoryContainer(VectorFactory<? extends Vector> vectorFactory)
Creates a new
DefaultVectorFactoryContainer with the given factory. |
| Modifier and Type | Class and Description |
|---|---|
class |
CustomDenseVectorFactory
Dense vector factory.
|
class |
CustomSparseVectorFactory
Generates Sparse Vectors with all settings initialized properly
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
DenseVector.getVectorFactory() |
VectorFactory<?> |
SparseVector.getVectorFactory() |
| Modifier and Type | Class and Description |
|---|---|
class |
DenseVectorFactoryMTJ
VectorFactory for MTJ's DenseVector-based Vector
|
class |
SparseVectorFactoryMTJ
Factory for MTJ's SparseVector
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<?> |
DenseVector.getVectorFactory() |
| Modifier and Type | Method and Description |
|---|---|
static Vector |
BagOfWordsTransform.convertToVector(java.lang.Iterable<? extends Termable> terms,
TermIndex termIndex,
VectorFactory<?> vectorFactory)
Converts a given list of terms to a vector by counting the occurrence of
each term.
|
Vector |
BagOfWordsTransform.convertToVector(java.lang.Iterable<? extends Termable> terms,
VectorFactory<?> vectorFactory)
Converts a given list of terms to a vector by counting the occurrence of
each term.
|
| Constructor and Description |
|---|
BagOfWordsTransform(TermIndex termIndex,
VectorFactory<? extends Vector> vectorFactory)
Creates a new
BagOfWordsTransform with the given term index. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<? extends Vector> |
AbstractGlobalTermWeighter.vectorFactory
The vector factory.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<? extends Vector> |
AbstractGlobalTermWeighter.getVectorFactory()
Gets the vector factory.
|
| Modifier and Type | Method and Description |
|---|---|
void |
AbstractGlobalTermWeighter.setVectorFactory(VectorFactory<? extends Vector> vectorFactory)
Sets the vector factory.
|
| Constructor and Description |
|---|
AbstractEntropyBasedGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
AbstractEntropyBasedGlobalTermWeighter. |
AbstractFrequencyBasedGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
AbstractCountingBasedGlobalTermWeighter. |
AbstractGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
AbstractGlobalTermWeighter. |
DominanceGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
DominanceGlobalTermWeighter. |
EntropyGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
EntropyGlobalTermWeighter. |
InverseDocumentFrequencyGlobalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
InverseDocumentFrequencyGlobalTermWeighter. |
| Constructor and Description |
|---|
AbstractLocalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
AbstractLocalTermWeighter. |
BinaryLocalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
BinaryLocalTermWeighter. |
LogLocalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
LogLocalTermWeighter. |
NormalizedLogLocalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
NormalizedLogLocalTermWeighter |
TermFrequencyLocalTermWeighter(VectorFactory<? extends Vector> vectorFactory)
Creates a new
LogLocalTermWeighter. |
| Modifier and Type | Field and Description |
|---|---|
protected VectorFactory<? extends Vector> |
ProbabilisticLatentSemanticAnalysis.vectorFactory
The vector factory.
|
| Modifier and Type | Method and Description |
|---|---|
VectorFactory<? extends Vector> |
ProbabilisticLatentSemanticAnalysis.getVectorFactory()
Gets the vector factory to use.
|
| Modifier and Type | Method and Description |
|---|---|
void |
ProbabilisticLatentSemanticAnalysis.setVectorFactory(VectorFactory<? extends Vector> vectorFactory)
Sets the vector factory to use.
|