public abstract class AbstractLinearCombinationOnlineLearner extends AbstractKernelizableBinaryCategorizerOnlineLearner
| Modifier and Type | Field and Description |
|---|---|
protected boolean |
updateBias
An option controlling whether or not the bias is updated or not.
|
vectorFactory| Constructor and Description |
|---|
AbstractLinearCombinationOnlineLearner(boolean updateBias)
Creates a new
AbstractLinearCombinationOnlineLearner with
default parameters. |
AbstractLinearCombinationOnlineLearner(boolean updateBias,
VectorFactory<?> vectorFactory)
Creates a new
AbstractLinearCombinationOnlineLearner with
the given parameters. |
| Modifier and Type | Method and Description |
|---|---|
protected <InputType> |
computeDecay(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted,
double update)
Computes the decay scalar for the existing weights.
|
protected double |
computeDecay(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted,
double update)
Computes the decay scalar for the existing weight vector.
|
protected <InputType> |
computeRescaling(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted,
double update,
double decay)
Computes the rescaling for the new weights.
|
protected double |
computeRescaling(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted,
double update,
double decay)
Computes the rescaling for the new weight vector.
|
protected abstract <InputType> |
computeUpdate(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
protected abstract double |
computeUpdate(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory,
double predicted)
Compute the update weight in the linear case.
|
<InputType> |
createInitialLearnedObject(Kernel<? super InputType> kernel)
Creates the initial learned object with a given kernel.
|
protected <InputType> |
initialize(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean actualCategory)
Initializes the kernel binary categorizer.
|
protected void |
initialize(LinearBinaryCategorizer target,
Vector input,
boolean actualCategory)
Initializes the linear binary categorizer.
|
boolean |
isUpdateBias()
Gets whether or not the algorithm is updating the bias.
|
protected void |
setUpdateBias(boolean updateBias)
Sets whether or not the algorithm is updating the bias.
|
<InputType> |
update(DefaultKernelBinaryCategorizer<InputType> target,
InputType input,
boolean output)
Performs a kernel-based incremental update step on the given object
using the given supervised data.
|
void |
update(LinearBinaryCategorizer target,
Vector input,
boolean label)
The
update method updates an object of ResultType using
the given a new supervised input-output pair, using some form of
"learning" algorithm. |
createKernelLearner, learn, update, update, updatecreateInitialLearnedObject, getVectorFactory, setVectorFactory, updateupdateclone, learn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitupdatelearnlearncreateInitialLearnedObject, update, updatecloneprotected boolean updateBias
public AbstractLinearCombinationOnlineLearner(boolean updateBias)
AbstractLinearCombinationOnlineLearner with
default parameters.updateBias - Whether or not the bias should be updated by the algorithm.public AbstractLinearCombinationOnlineLearner(boolean updateBias,
VectorFactory<?> vectorFactory)
AbstractLinearCombinationOnlineLearner with
the given parameters.updateBias - Whether or not the bias should be updated by the algorithm.vectorFactory - The vector factory to use.public void update(LinearBinaryCategorizer target, Vector input, boolean label)
AbstractOnlineLinearBinaryCategorizerLearnerupdate method updates an object of ResultType using
the given a new supervised input-output pair, using some form of
"learning" algorithm.update in class AbstractOnlineLinearBinaryCategorizerLearnertarget - The object to update.input - The supervised input vector to learn from.label - The supervised output label to learn from.public <InputType> DefaultKernelBinaryCategorizer<InputType> createInitialLearnedObject(Kernel<? super InputType> kernel)
KernelizableBinaryCategorizerOnlineLearnercreateInitialLearnedObject in interface KernelizableBinaryCategorizerOnlineLearnercreateInitialLearnedObject in class AbstractKernelizableBinaryCategorizerOnlineLearnerInputType - The input type for supervised learning. Will be passed to the
kernel function.kernel - The kernel function to use.public <InputType> void update(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean output)
KernelizableBinaryCategorizerOnlineLearnerInputType - The input type for supervised learning. Will be passed to the
kernel function.target - The target object to update.input - The supervised input value.output - The supervised output value (label).protected void initialize(LinearBinaryCategorizer target, Vector input, boolean actualCategory)
target - The categorizer to initialize.input - The first input seen.actualCategory - The actual category of the first input.protected abstract double computeUpdate(LinearBinaryCategorizer target, Vector input, boolean actualCategory, double predicted)
target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.protected double computeDecay(LinearBinaryCategorizer target, Vector input, boolean actualCategory, double predicted, double update)
target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.update - The value from the computeUpdate step.protected double computeRescaling(LinearBinaryCategorizer target, Vector input, boolean actualCategory, double predicted, double update, double decay)
target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.update - The value from the computeUpdate step.decay - The value from the computeDecay step.protected <InputType> void initialize(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean actualCategory)
InputType - The input value for learning.target - The categorizer to initialize.input - The first input seen.actualCategory - The actual category of the first input.protected abstract <InputType> double computeUpdate(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean actualCategory, double predicted)
InputType - The input value for learning.target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.protected <InputType> double computeDecay(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean actualCategory, double predicted, double update)
InputType - The input value for learning.target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.update - The value from the computeUpdate step.protected <InputType> double computeRescaling(DefaultKernelBinaryCategorizer<InputType> target, InputType input, boolean actualCategory, double predicted, double update, double decay)
InputType - The input value for learning.target - Target to compute the update for.input - Input to use in computing the update.actualCategory - The actual category of the input.predicted - The predicted category of the input.update - The value from the computeUpdate step.decay - The value from the computeDecay step.public boolean isUpdateBias()
protected void setUpdateBias(boolean updateBias)
updateBias - True if the algorithm is updating the bias. Otherwise, false.