InputType - The type of input data in the input-output pair that
the learner can learn from. The Evaluator learned from the
algorithm also takes this as the input parameter.OutputType - The type of output data in the input-output pair that
the learner can learn from. The Evaluator learned from the
algorithm also produces this as its output.ResultType - The type of object created by the learning algorithm.
For example, a LinearBinaryCategorizer.public abstract class AbstractSupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType extends Evaluator<? super InputType,? extends OutputType>> extends AbstractBatchAndIncrementalLearner<InputOutputPair<? extends InputType,OutputType>,ResultType> implements SupervisedBatchAndIncrementalLearner<InputType,OutputType,ResultType>
| Constructor and Description |
|---|
AbstractSupervisedBatchAndIncrementalLearner()
Creates a new
AbstractSupervisedBatchAndIncrementalLearner. |
| Modifier and Type | Method and Description |
|---|---|
void |
update(ResultType target,
InputOutputPair<? extends InputType,OutputType> data)
The
update method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm. |
clone, learn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitupdatelearnlearncreateInitialLearnedObject, updateclonepublic AbstractSupervisedBatchAndIncrementalLearner()
AbstractSupervisedBatchAndIncrementalLearner.public void update(ResultType target, InputOutputPair<? extends InputType,OutputType> data)
IncrementalLearnerupdate method updates an object of ResultType using
the given new data of type DataType, using some form of
"learning" algorithm.update in interface IncrementalLearner<InputOutputPair<? extends InputType,OutputType>,ResultType extends Evaluator<? super InputType,? extends OutputType>>target - The object to update.data - The new data for the learning algorithm to use to update
the object.