@PublicationReference(title="Confidence-Weighted Linear Classification", author={"Mark Dredze","Koby Crammer","Fernando Pereira"}, year=2008, type=Conference, publication="International Conference on Machine Learning", url="http://portal.acm.org/citation.cfm?id=1390190") public class ConfidenceWeightedDiagonalVarianceProject extends ConfidenceWeightedDiagonalVariance
confidence, DEFAULT_CONFIDENCE, DEFAULT_DEFAULT_VARIANCE, defaultVariance, phi| Constructor and Description |
|---|
ConfidenceWeightedDiagonalVarianceProject()
Creates a new
ConfidenceWeightedDiagonalVarianceProject with default
parameters. |
ConfidenceWeightedDiagonalVarianceProject(double confidence,
double defaultVariance)
Creates a new
ConfidenceWeightedDiagonalVarianceProject with the given
parameters. |
| Modifier and Type | Method and Description |
|---|---|
void |
update(DiagonalConfidenceWeightedBinaryCategorizer target,
Vector input,
boolean label)
Updates the target using the given input and associated label.
|
createInitialLearnedObject, getConfidence, getDefaultVariance, setConfidence, setDefaultVariance, updateupdateclone, learn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnlearnupdateclonepublic ConfidenceWeightedDiagonalVarianceProject()
ConfidenceWeightedDiagonalVarianceProject with default
parameters.public ConfidenceWeightedDiagonalVarianceProject(double confidence,
double defaultVariance)
ConfidenceWeightedDiagonalVarianceProject with the given
parameters.confidence - The confidence to use. Must be in [0, 1].defaultVariance - The default value to initialize the covariance matrix to.public void update(DiagonalConfidenceWeightedBinaryCategorizer target, Vector input, boolean label)
ConfidenceWeightedDiagonalVarianceupdate in class ConfidenceWeightedDiagonalVariancetarget - The target to update.input - The supervised input value.label - The output label associated with the input.