@PublicationReference(author={"Koby Crammer","Mark Dredze","Fernando Pereira"}, title="Exact Convex Confidence-Weighted Learning", year=2008, type=Conference, publication="Advances in Neural Information Processing Systems", url="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.169.3364") public class ConfidenceWeightedDiagonalDeviationProject extends ConfidenceWeightedDiagonalDeviation
confidence, DEFAULT_CONFIDENCE, DEFAULT_DEFAULT_VARIANCE, defaultVariance, epsilon, phi, psi| Constructor and Description |
|---|
ConfidenceWeightedDiagonalDeviationProject()
Creates a new
ConfidenceWeightedDiagonalDeviationProject with
default parameters. |
ConfidenceWeightedDiagonalDeviationProject(double confidence,
double defaultVariance)
Creates a new
ConfidenceWeightedDiagonalDeviationProject with the given
parameters. |
| Modifier and Type | Method and Description |
|---|---|
void |
update(DiagonalConfidenceWeightedBinaryCategorizer target,
Vector input,
boolean label)
Updates the target using the given input and associated label.
|
createInitialLearnedObject, getConfidence, getDefaultVariance, setConfidence, setDefaultVariance, updateupdateclone, learn, learn, updateequals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitlearnlearnupdateclonepublic ConfidenceWeightedDiagonalDeviationProject()
ConfidenceWeightedDiagonalDeviationProject with
default parameters.public ConfidenceWeightedDiagonalDeviationProject(double confidence,
double defaultVariance)
ConfidenceWeightedDiagonalDeviationProject with the given
parameters.confidence - The confidence to use. Must be in [0, 1].defaultVariance - The default value to initialize the covariance matrix to.public void update(DiagonalConfidenceWeightedBinaryCategorizer target, Vector input, boolean label)
ConfidenceWeightedDiagonalDeviationupdate in class ConfidenceWeightedDiagonalDeviationtarget - The target to update.input - The supervised input value.label - The output label associated with the input.