| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.clustering | 
 Provides clustering algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.cluster | 
 Provides implementations of different types of clusters. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.divergence | 
 Provides divergence functions for use in clustering. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.hierarchy | 
 Provides a hierarchy for clusters. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.initializer | 
 Provides implementations of methods for selecting initial clusters. 
 | 
| gov.sandia.cognition.learning.function.cost | 
 Provides cost functions. 
 | 
| gov.sandia.cognition.statistics.bayesian | 
 Provides algorithms for computing Bayesian estimates of parameters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AgglomerativeClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
AgglomerativeClusterer implements an agglomerative clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
static class  | 
AgglomerativeClusterer.HierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Holds the hierarchy information for the agglomerative clusterer. 
 | 
interface  | 
BatchClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
BatchClusterer interface defines the functionality of a batch 
 clustering algorithm. | 
class  | 
DBSCANClusterer<DataType extends Vectorizable,ClusterType extends Cluster<DataType>>
The  
DBSCAN algorithm requires three parameters: a distance
 metric, a value for neighborhood radius, and a value for the minimum number
 of surrounding neighbors for a point to be considered non-noise. | 
class  | 
KMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
KMeansClusterer class implements the standard k-means
 (k-centroids) clustering algorithm. | 
class  | 
KMeansClustererWithRemoval<DataType,ClusterType extends Cluster<DataType>>
Creates a k-means clustering algorithm that removes clusters that do
 not have sufficient membership to pass a simple statistical significance
 test. 
 | 
class  | 
ParallelizedKMeansClusterer<DataType,ClusterType extends Cluster<DataType>>
This is a parallel implementation of the k-means clustering algorithm. 
 | 
class  | 
PartitionalClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
PartitionalClusterer implements a partitional clustering
 algorithm, which is a type of hierarchical clustering algorithm. | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
AgglomerativeClusterer.HierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Holds the hierarchy information for the agglomerative clusterer. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusterCreator<ClusterType extends Cluster<DataType>,DataType>
The ClusterCreator defines the functionality of a class that can create a
 new cluster from a given collection of members of that cluster. 
 | 
interface  | 
IncrementalClusterCreator<ClusterType extends Cluster<DataType>,DataType>
An interface for a  
ClusterCreator that can incrementally add and
 remove members from a cluster. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CentroidCluster<ClusterType>
The CentroidCluster class extends the default cluster to contain a central
 element. 
 | 
class  | 
DefaultCluster<ClusterType>
The DefaultCluster class implements a default cluster which contains a
 list of members in an ArrayList along with an index that identifies the
 cluster. 
 | 
class  | 
GaussianCluster
The  
GaussianCluster class implements a cluster of Vector 
 objects that has a MultivariateGaussian object representing the
 cluster. | 
class  | 
MiniBatchCentroidCluster  | 
class  | 
NormalizedCentroidCluster<ClusterType>
Add the ability to store the centroid of the normalized vectors belonging to
 a centroid cluster. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The AbstractClusterToClusterDivergenceFunction class is an abstract class
 that helps out implementations of ClusterToClusterDivergenceFunction
 implementations by holding a DivergenceFunction between elements of a
 cluster. 
 | 
class  | 
ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterCompleteLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. 
 | 
interface  | 
ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterDivergenceFunction interface defines a function that computes
 the divergence between a cluster and some other object. 
 | 
class  | 
ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterMeanLinkDivergenceFunction class implements the mean linkage 
 distance metric between two clusters. 
 | 
class  | 
ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterSingleLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. 
 | 
interface  | 
ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
 two clusters of the same data type. 
 | 
interface  | 
WithinClusterDivergence<ClusterType extends Cluster<DataType>,DataType>
Defines a function that computes the divergence of the elements in a cluster. 
 | 
class  | 
WithinClusterDivergenceWrapper<ClusterType extends Cluster<DataType>,DataType>
Accumulates the results of a  
ClusterDivergenceFunction by summing the
 divergence of each point to its cluster. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
An abstract implementation of the  
ClusterHierarchyNode class. | 
interface  | 
BatchHierarchicalClusterer<DataType,ClusterType extends Cluster<DataType>>
The  
BatchHierarchicalClusterer interface defines the functionality
 of a batch hierarchical clustering algorithm. | 
class  | 
BinaryClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Implements a binary cluster hierarchy node. 
 | 
interface  | 
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Defines a node in a hierarchy of clusters. 
 | 
class  | 
DefaultClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
A default implementation of the cluster hierarchy node. 
 | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
ClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Defines a node in a hierarchy of clusters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
An abstract implementation of the  
ClusterHierarchyNode class. | 
class  | 
BinaryClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
Implements a binary cluster hierarchy node. 
 | 
class  | 
DefaultClusterHierarchyNode<DataType,ClusterType extends Cluster<DataType>>
A default implementation of the cluster hierarchy node. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected ClusterType | 
AbstractClusterHierarchyNode.cluster
The cluster associated with the node. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractMinDistanceFixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements an abstract FixedClusterInitializer that works by using the
 minimum distance from a point to the cluster. 
 | 
class  | 
DistanceSamplingClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements  
FixedClusterInitializer that initializes clusters by
 first selecting a random point for the first cluster and then randomly
 sampling each successive cluster based on the squared minimum distance from
 the point to the existing selected clusters. | 
interface  | 
FixedClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
The FixedClusterInitializer interface defines the functionality of a class
 that can initialize a given number of clusters from a set of elements. 
 | 
class  | 
GreedyClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Implements a FixedClusterInitializer that greedily attempts to create the
 initial clusters. 
 | 
class  | 
RandomClusterInitializer<ClusterType extends Cluster<DataType>,DataType>
Creates initial clusters by selecting random data points as singleton
 clusters. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
Computes the objective measure for a clustering algorithm, based on the
 internal "distortion" of each cluster. 
 | 
class  | 
ParallelClusterDistortionMeasure<DataType,ClusterType extends Cluster<DataType>>
A parallel implementation of ClusterDistortionMeasure. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
DirichletProcessMixtureModel.DPMMCluster<ObservationType>
Cluster for a step in the DPMM 
 |