- Type Parameters:
ClusterType - type of Cluster<DataType> used in the
learn() method
DataType - The algorithm operates on a Collection<DataType>,
so DataType will be something like Vector or String
- All Superinterfaces:
- DivergenceFunction<ClusterType,ClusterType>
- All Known Implementing Classes:
- AbstractClusterToClusterDivergenceFunction, ClusterCentroidDivergenceFunction, ClusterCompleteLinkDivergenceFunction, ClusterMeanLinkDivergenceFunction, ClusterSingleLinkDivergenceFunction
@CodeReview(reviewer="Kevin R. Dixon",
date="2008-07-23",
changesNeeded=false,
comments={"Cleaned up javadoc a little bit with code annotations.","Otherwise, looks fine."})
public interface ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
extends DivergenceFunction<ClusterType,ClusterType>
The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
two clusters of the same data type. This represents the divergence between
the two clusters. It is useful in conjunction with
AgglomerativeClustering.
- Since:
- 1.0
- Author:
- Justin Basilico