| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.clustering | 
 Provides clustering algorithms. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.cluster | 
 Provides implementations of different types of clusters. 
 | 
| gov.sandia.cognition.learning.algorithm.clustering.divergence | 
 Provides divergence functions for use in clustering. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> | 
AffinityPropagation.clusters
The clusters that have been found so far. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> | 
KMeansFactory.create()  | 
static PartitionalClusterer<Vector,CentroidCluster<Vector>> | 
PartitionalClusterer.create(int numRequestedClusters)
Create a partitional clusterer, using Euclidean distance and a vector
 mean centroid cluster creator. 
 | 
static ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> | 
KMeansFactory.create(int numClusters,
      java.util.Random random)
Creates a new parallelized k-means clustering algorithm for vector data
 with the given number of clusters (k) and random number generator. 
 | 
static ParallelizedKMeansClusterer<Vector,CentroidCluster<Vector>> | 
KMeansFactory.create(int numClusters,
      Semimetric<? super Vector> distanceMetric,
      java.util.Random random)
Creates a new parallelized k-means clustering algorithm for vector data
 with the given number of clusters (k), distance metric, and random
 number generator. 
 | 
protected java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> | 
AffinityPropagation.getClusters()
Gets the current clusters, which is a sparse mapping of exemplar 
 identifier to cluster object. 
 | 
java.util.ArrayList<CentroidCluster<DataType>> | 
AffinityPropagation.getResult()  | 
| Modifier and Type | Method and Description | 
|---|---|
protected void | 
AffinityPropagation.setClusters(java.util.HashMap<java.lang.Integer,CentroidCluster<DataType>> clusters)
Sets the current clusters, which is a sparse mapping of exemplar 
 identifier to cluster object. 
 | 
| Constructor and Description | 
|---|
OptimizedKMeansClusterer(int numClusters,
                        int maxIterations,
                        FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
                        Metric<? super DataType> metric,
                        ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer. 
 | 
OptimizedKMeansClusterer(int numClusters,
                        int maxIterations,
                        FixedClusterInitializer<CentroidCluster<DataType>,DataType> initializer,
                        Metric<? super DataType> metric,
                        ClusterCreator<CentroidCluster<DataType>,DataType> creator)
Creates a new instance of OptimizedKMeansClusterer. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MiniBatchCentroidCluster  | 
class  | 
NormalizedCentroidCluster<ClusterType>
Add the ability to store the centroid of the normalized vectors belonging to
 a centroid cluster. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
CentroidCluster<Vector> | 
VectorMeanCentroidClusterCreator.createCluster()  | 
CentroidCluster<DataType> | 
MedoidClusterCreator.createCluster(java.util.Collection<? extends DataType> members)
Creates a CentroidCluster at the member that minimizes the sum of
 divergence between all members 
 | 
CentroidCluster<Vector> | 
VectorMeanCentroidClusterCreator.createCluster(java.util.Collection<? extends Vector> members)  | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
VectorMeanCentroidClusterCreator.addClusterMember(CentroidCluster<Vector> cluster,
                Vector member)  | 
boolean | 
VectorMeanCentroidClusterCreator.removeClusterMember(CentroidCluster<Vector> cluster,
                   Vector member)  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
ClusterCentroidDivergenceFunction.evaluate(CentroidCluster<DataType> from,
        CentroidCluster<DataType> to)
This method computes the complete link distance between the two given 
 Clusters. 
 | 
double | 
ClusterCentroidDivergenceFunction.evaluate(CentroidCluster<DataType> from,
        CentroidCluster<DataType> to)
This method computes the complete link distance between the two given 
 Clusters. 
 | 
double | 
CentroidClusterDivergenceFunction.evaluate(CentroidCluster<DataType> cluster,
        DataType other)
Evaluates the divergence between the cluster centroid and the given
 object. 
 |