Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.experiment |
Provides experiments for validating the performance of learning algorithms.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.summarizer |
Provides classes for summarizing data.
|
gov.sandia.cognition.learning.performance |
Provides performance measures.
|
gov.sandia.cognition.learning.performance.categorization |
Provides performance measures for categorizers.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
Modifier and Type | Method and Description |
---|---|
Summarizer<? super OutputType,? extends OutputType> |
AbstractKNearestNeighbor.getAverager()
Getter for averager
|
Summarizer<? super OutputType,? extends OutputType> |
KNearestNeighbor.getAverager()
Getter for averager.
|
Modifier and Type | Method and Description |
---|---|
void |
AbstractKNearestNeighbor.setAverager(Summarizer<? super OutputType,? extends OutputType> averager)
Setter for averager
|
void |
KNearestNeighbor.setAverager(Summarizer<? super OutputType,? extends OutputType> averager)
Setter for averager.
|
Constructor and Description |
---|
AbstractKNearestNeighbor(int k,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighbor
|
KNearestNeighborExhaustive(int k,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborExhaustive
|
KNearestNeighborKDTree(int k,
KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
Metric<? super InputType> distanceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborKDTree
|
Learner(int k,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,OutputType> averager)
Creates a new instance of Learner
|
Learner(int k,
Metric<? super Vectorizable> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of Learner
|
Learner(Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of Learner.
|
Modifier and Type | Field and Description |
---|---|
protected Summarizer<? super StatisticType,? extends SummaryType> |
LearnerComparisonExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
from all the folds.
|
protected Summarizer<? super StatisticType,? extends SummaryType> |
LearnerRepeatExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
from all the folds.
|
protected Summarizer<? super StatisticType,? extends SummaryType> |
LearnerValidationExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
from all the folds.
|
protected Summarizer<? super StatisticType,? extends SummaryType> |
OnlineLearnerValidationExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
from all the folds.
|
Modifier and Type | Method and Description |
---|---|
Summarizer<? super StatisticType,? extends SummaryType> |
LearnerComparisonExperiment.getSummarizer()
Gets the summarizer of the performance evaluations.
|
Summarizer<? super StatisticType,? extends SummaryType> |
LearnerRepeatExperiment.getSummarizer()
Gets the summarizer of the performance evaluations.
|
Summarizer<? super StatisticType,? extends SummaryType> |
LearnerValidationExperiment.getSummarizer()
Gets the summarizer of the performance evaluations.
|
Summarizer<? super StatisticType,? extends SummaryType> |
OnlineLearnerValidationExperiment.getSummarizer()
Gets the summarizer of the performance evaluations.
|
Modifier and Type | Method and Description |
---|---|
void |
LearnerComparisonExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations.
|
void |
LearnerRepeatExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations.
|
void |
LearnerValidationExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations.
|
void |
OnlineLearnerValidationExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations.
|
Constructor and Description |
---|
LearnerComparisonExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
NullHypothesisEvaluator<java.util.Collection<? extends StatisticType>> statisticalTest,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of LearnerComparisonExperiment.
|
LearnerRepeatExperiment(int numTrials,
PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends InputDataType>,? extends StatisticType> performanceEvaluator,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of LearnerRepeatExperiment.
|
LearnerValidationExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of SupervisedLearnerExperiment.
|
OnlineLearnerValidationExperiment(PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends DataType>,? extends StatisticType> performanceEvaluator,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of IncrementalLearnerValidationExperiment.
|
ParallelLearnerValidationExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of ParallelLearnerValidationExperiment.
|
SupervisedLearnerComparisonExperiment(ValidationFoldCreator<InputOutputPair<InputType,OutputType>,InputOutputPair<InputType,OutputType>> foldCreator,
PerformanceEvaluator<? super Evaluator<? super InputType,OutputType>,? super java.util.Collection<? extends InputOutputPair<InputType,OutputType>>,? extends StatisticType> performanceEvaluator,
NullHypothesisEvaluator<java.util.Collection<? extends StatisticType>> statisticalTest,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of
SupervisedLearnerComparisonExperiment . |
SupervisedLearnerValidationExperiment(ValidationFoldCreator<InputOutputPair<InputType,OutputType>,InputOutputPair<InputType,OutputType>> foldCreator,
PerformanceEvaluator<? super Evaluator<? super InputType,? extends OutputType>,? super java.util.Collection<? extends InputOutputPair<InputType,OutputType>>,? extends StatisticType> performanceEvaluator,
Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of
SupervisedLearnerValidationExperiment . |
Modifier and Type | Interface and Description |
---|---|
interface |
DifferentiableCostFunction
The
DifferentiableCostFunction is a cost function that can
be differentiated. |
interface |
ParallelizableCostFunction
Interface describing a cost function that can (largely) be computed in
parallel.
|
interface |
SupervisedCostFunction<InputType,TargetType>
A type of CostFunction normally used in supervised-learning applications.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractParallelizableCostFunction
Partial implementation of the ParallelizableCostFunction
|
class |
AbstractSupervisedCostFunction<InputType,TargetType>
Partial implementation of SupervisedCostFunction
|
class |
MeanL1CostFunction
Cost function that evaluates the mean 1-norm error (absolute value of
difference) weighted by a sample "weight" that is embedded in each sample.
|
class |
MeanSquaredErrorCostFunction
The MeanSquaredErrorCostFunction implements a cost function for functions
that take as input a vector and return a vector.
|
class |
ParallelizedCostFunctionContainer
A cost function that automatically splits a ParallelizableCostFunction
across multiple cores/processors to speed up computation.
|
class |
SumSquaredErrorCostFunction
This is the sum-squared error cost function
|
Modifier and Type | Class and Description |
---|---|
class |
MostFrequentSummarizer<DataType>
Summarizes a set of values by returning the most frequent value.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSupervisedPerformanceEvaluator<InputType,TargetType,EstimateType,ResultType>
The
AbstractSupervisedPerformanceEvaluator class contains an
abstract implementation of the SupervisedPerformanceEvaluator class. |
class |
MeanAbsoluteErrorEvaluator<InputType>
The
MeanAbsoluteError class implements a method for computing the
performance of a supervised learner for a scalar function by the mean
absolute value between the target and estimated outputs. |
class |
MeanSquaredErrorEvaluator<InputType>
The
MeanSquaredError class implements the method for computing the
performance of a supervised learner for a scalar function by the mean squared
between the target and estimated outputs. |
class |
MeanZeroOneErrorEvaluator<InputType,DataType>
The
MeanZeroOneErrorEvaluator class implements a method for
computing the performance of a supervised learner by the mean number of
incorrect values between the target and estimated outputs. |
class |
RootMeanSquaredErrorEvaluator<InputType>
The
RootMeanSquaredErrorEvaluator class implements a method for
computing the performance of a supervised learner for a scalar function by
the root mean squared error (RMSE or RSE) between the target and estimated
outputs. |
Modifier and Type | Class and Description |
---|---|
class |
ConfusionMatrixPerformanceEvaluator<InputType,CategoryType>
A performance evaluator that builds a confusion matrix.
|
static class |
DefaultBinaryConfusionMatrix.ActualPredictedPairSummarizer
A confusion matrix summarizer that summarizes actual-predicted pairs.
|
static class |
DefaultBinaryConfusionMatrix.CombineSummarizer
A confusion matrix summarizer that adds together confusion matrices.
|
static class |
DefaultBinaryConfusionMatrix.PerformanceEvaluator<InputType>
An implementation of the
SupervisedPerformanceEvaluator interface
for creating a DefaultBinaryConfusionMatrix . |
static class |
DefaultBinaryConfusionMatrixConfidenceInterval.Summary
An implementation of the
Summarizer interface for creating a
ConfusionMatrixInterval |
static class |
DefaultConfusionMatrix.ActualPredictedPairSummarizer<CategoryType>
A confusion matrix summarizer that summarizes actual-predicted pairs.
|
static class |
DefaultConfusionMatrix.CombineSummarizer<CategoryType>
A confusion matrix summarizer that adds together confusion matrices.
|
Modifier and Type | Class and Description |
---|---|
class |
NumberAverager
Returns an average (arithmetic mean) of a collection of Numbers
|
class |
RingAverager<RingType extends Ring<RingType>>
A type of Averager for Rings (Matrices, Vectors, ComplexNumbers).
|
class |
WeightedNumberAverager
Averages together given set of weighted values by adding up the weight times
the value and then dividing by the total weight.
|
class |
WeightedRingAverager<RingType extends Ring<RingType>>
A type of Summarizer for Rings (Matrices, Vectors, ComplexNumbers).
|
Modifier and Type | Class and Description |
---|---|
static class |
StudentTConfidence.Summary
An implementation of the
Summarizer interface for creating a
ConfidenceInterval |