| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.nearest | 
 Provides algorithms for Nearest-Neighbor memory-based functions. 
 | 
| gov.sandia.cognition.learning.experiment | 
 Provides experiments for validating the performance of learning algorithms. 
 | 
| gov.sandia.cognition.learning.function.cost | 
 Provides cost functions. 
 | 
| gov.sandia.cognition.learning.function.summarizer | 
 Provides classes for summarizing data. 
 | 
| gov.sandia.cognition.learning.performance | 
 Provides performance measures. 
 | 
| gov.sandia.cognition.learning.performance.categorization | 
 Provides performance measures for categorizers. 
 | 
| gov.sandia.cognition.math | 
 Provides classes for mathematical computation. 
 | 
| gov.sandia.cognition.statistics.method | 
 Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Summarizer<? super OutputType,? extends OutputType> | 
AbstractKNearestNeighbor.getAverager()
Getter for averager 
 | 
Summarizer<? super OutputType,? extends OutputType> | 
KNearestNeighbor.getAverager()
Getter for averager. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
AbstractKNearestNeighbor.setAverager(Summarizer<? super OutputType,? extends OutputType> averager)
Setter for averager 
 | 
void | 
KNearestNeighbor.setAverager(Summarizer<? super OutputType,? extends OutputType> averager)
Setter for averager. 
 | 
| Constructor and Description | 
|---|
AbstractKNearestNeighbor(int k,
                        DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
                        Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighbor 
 | 
KNearestNeighborExhaustive(int k,
                          java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
                          DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
                          Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborExhaustive 
 | 
KNearestNeighborKDTree(int k,
                      KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
                      Metric<? super InputType> distanceFunction,
                      Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborKDTree 
 | 
Learner(int k,
       DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
       Summarizer<? super OutputType,OutputType> averager)
Creates a new instance of Learner 
 | 
Learner(int k,
       Metric<? super Vectorizable> divergenceFunction,
       Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of Learner 
 | 
Learner(Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of Learner. 
 | 
| Modifier and Type | Field and Description | 
|---|---|
protected Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerComparisonExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator 
  from all the folds. 
 | 
protected Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerRepeatExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
  from all the folds. 
 | 
protected Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerValidationExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator 
  from all the folds. 
 | 
protected Summarizer<? super StatisticType,? extends SummaryType> | 
OnlineLearnerValidationExperiment.summarizer
The summarizer for summarizing the result of the performance evaluator
  from all the folds. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerComparisonExperiment.getSummarizer()
Gets the summarizer of the performance evaluations. 
 | 
Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerRepeatExperiment.getSummarizer()
Gets the summarizer of the performance evaluations. 
 | 
Summarizer<? super StatisticType,? extends SummaryType> | 
LearnerValidationExperiment.getSummarizer()
Gets the summarizer of the performance evaluations. 
 | 
Summarizer<? super StatisticType,? extends SummaryType> | 
OnlineLearnerValidationExperiment.getSummarizer()
Gets the summarizer of the performance evaluations. 
 | 
| Modifier and Type | Method and Description | 
|---|---|
void | 
LearnerComparisonExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations. 
 | 
void | 
LearnerRepeatExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations. 
 | 
void | 
LearnerValidationExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations. 
 | 
void | 
OnlineLearnerValidationExperiment.setSummarizer(Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Sets the summarizer of the performance evaluations. 
 | 
| Constructor and Description | 
|---|
LearnerComparisonExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
                           PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
                           NullHypothesisEvaluator<java.util.Collection<? extends StatisticType>> statisticalTest,
                           Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of LearnerComparisonExperiment. 
 | 
LearnerRepeatExperiment(int numTrials,
                       PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends InputDataType>,? extends StatisticType> performanceEvaluator,
                       Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of LearnerRepeatExperiment. 
 | 
LearnerValidationExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
                           PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
                           Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of SupervisedLearnerExperiment. 
 | 
OnlineLearnerValidationExperiment(PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends DataType>,? extends StatisticType> performanceEvaluator,
                                 Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of IncrementalLearnerValidationExperiment. 
 | 
ParallelLearnerValidationExperiment(ValidationFoldCreator<InputDataType,FoldDataType> foldCreator,
                                   PerformanceEvaluator<? super LearnedType,? super java.util.Collection<? extends FoldDataType>,? extends StatisticType> performanceEvaluator,
                                   Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of ParallelLearnerValidationExperiment. 
 | 
SupervisedLearnerComparisonExperiment(ValidationFoldCreator<InputOutputPair<InputType,OutputType>,InputOutputPair<InputType,OutputType>> foldCreator,
                                     PerformanceEvaluator<? super Evaluator<? super InputType,OutputType>,? super java.util.Collection<? extends InputOutputPair<InputType,OutputType>>,? extends StatisticType> performanceEvaluator,
                                     NullHypothesisEvaluator<java.util.Collection<? extends StatisticType>> statisticalTest,
                                     Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of  
SupervisedLearnerComparisonExperiment. | 
SupervisedLearnerValidationExperiment(ValidationFoldCreator<InputOutputPair<InputType,OutputType>,InputOutputPair<InputType,OutputType>> foldCreator,
                                     PerformanceEvaluator<? super Evaluator<? super InputType,? extends OutputType>,? super java.util.Collection<? extends InputOutputPair<InputType,OutputType>>,? extends StatisticType> performanceEvaluator,
                                     Summarizer<? super StatisticType,? extends SummaryType> summarizer)
Creates a new instance of  
SupervisedLearnerValidationExperiment. | 
| Modifier and Type | Interface and Description | 
|---|---|
interface  | 
DifferentiableCostFunction
The  
DifferentiableCostFunction is a cost function that can 
 be differentiated. | 
interface  | 
ParallelizableCostFunction
Interface describing a cost function that can (largely) be computed in
 parallel. 
 | 
interface  | 
SupervisedCostFunction<InputType,TargetType>
A type of CostFunction normally used in supervised-learning applications. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractParallelizableCostFunction
Partial implementation of the ParallelizableCostFunction 
 | 
class  | 
AbstractSupervisedCostFunction<InputType,TargetType>
Partial implementation of SupervisedCostFunction 
 | 
class  | 
MeanL1CostFunction
Cost function that evaluates the mean 1-norm error (absolute value of
 difference) weighted by a sample "weight" that is embedded in each sample. 
 | 
class  | 
MeanSquaredErrorCostFunction
The MeanSquaredErrorCostFunction implements a cost function for functions
 that take as input a vector and return a vector. 
 | 
class  | 
ParallelizedCostFunctionContainer
A cost function that automatically splits a ParallelizableCostFunction
 across multiple cores/processors to speed up computation. 
 | 
class  | 
SumSquaredErrorCostFunction
This is the sum-squared error cost function 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
MostFrequentSummarizer<DataType>
Summarizes a set of values by returning the most frequent value. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
AbstractSupervisedPerformanceEvaluator<InputType,TargetType,EstimateType,ResultType>
The  
AbstractSupervisedPerformanceEvaluator class contains an 
 abstract implementation of the SupervisedPerformanceEvaluator class. | 
class  | 
MeanAbsoluteErrorEvaluator<InputType>
The  
MeanAbsoluteError class implements a method for computing the
 performance of a supervised learner for a scalar function by the mean
 absolute value between the target and estimated outputs. | 
class  | 
MeanSquaredErrorEvaluator<InputType>
The  
MeanSquaredError class implements the method for computing the
 performance of a supervised learner for a scalar function by the mean squared
 between the target and estimated outputs. | 
class  | 
MeanZeroOneErrorEvaluator<InputType,DataType>
The  
MeanZeroOneErrorEvaluator class implements a method for
 computing the performance of a supervised learner by the mean number of
 incorrect values between the target and estimated outputs. | 
class  | 
RootMeanSquaredErrorEvaluator<InputType>
The  
RootMeanSquaredErrorEvaluator class implements a method for 
 computing the performance of a supervised learner for a scalar function by 
 the root mean squared error (RMSE or RSE) between the target and estimated 
 outputs. | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
ConfusionMatrixPerformanceEvaluator<InputType,CategoryType>
A performance evaluator that builds a confusion matrix. 
 | 
static class  | 
DefaultBinaryConfusionMatrix.ActualPredictedPairSummarizer
A confusion matrix summarizer that summarizes actual-predicted pairs. 
 | 
static class  | 
DefaultBinaryConfusionMatrix.CombineSummarizer
A confusion matrix summarizer that adds together confusion matrices. 
 | 
static class  | 
DefaultBinaryConfusionMatrix.PerformanceEvaluator<InputType>
An implementation of the  
SupervisedPerformanceEvaluator interface
 for creating a DefaultBinaryConfusionMatrix. | 
static class  | 
DefaultBinaryConfusionMatrixConfidenceInterval.Summary
An implementation of the  
Summarizer interface for creating a
 ConfusionMatrixInterval | 
static class  | 
DefaultConfusionMatrix.ActualPredictedPairSummarizer<CategoryType>
A confusion matrix summarizer that summarizes actual-predicted pairs. 
 | 
static class  | 
DefaultConfusionMatrix.CombineSummarizer<CategoryType>
A confusion matrix summarizer that adds together confusion matrices. 
 | 
| Modifier and Type | Class and Description | 
|---|---|
class  | 
NumberAverager
Returns an average (arithmetic mean) of a collection of Numbers 
 | 
class  | 
RingAverager<RingType extends Ring<RingType>>
A type of Averager for Rings (Matrices, Vectors, ComplexNumbers). 
 | 
class  | 
WeightedNumberAverager
Averages together given set of weighted values by adding up the weight times
 the value and then dividing by the total weight. 
 | 
class  | 
WeightedRingAverager<RingType extends Ring<RingType>>
A type of Summarizer for Rings (Matrices, Vectors, ComplexNumbers). 
 | 
| Modifier and Type | Class and Description | 
|---|---|
static class  | 
StudentTConfidence.Summary
An implementation of the  
Summarizer interface for creating a
 ConfidenceInterval |