Package | Description |
---|---|
gov.sandia.cognition.algorithm |
Provides general interfaces and implementations for algorithms.
|
gov.sandia.cognition.learning.algorithm.annealing |
Provides the Simulated Annealing algorithm.
|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.genetic |
Provides a genetic algorithm implementation.
|
gov.sandia.cognition.learning.algorithm.hmm |
Provides hidden Markov model (HMM) algorithms.
|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.algorithm.perceptron |
Provides the Perceptron algorithm and some of its variations.
|
gov.sandia.cognition.learning.algorithm.perceptron.kernel | |
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.algorithm.root |
Provides algorithms for finding the roots, or zero crossings, of scalar functions.
|
gov.sandia.cognition.learning.algorithm.svm |
Provides implementations of Support Vector Machine (SVM) learning algorithms.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.bayesian.conjugate |
Provides Bayesian estimation routines based on conjugate prior distribution
of parameters of specific conditional distributions.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
gov.sandia.cognition.statistics.method |
Provides algorithms for evaluating statistical data and conducting statistical inference, particularly frequentist methods.
|
gov.sandia.cognition.util |
Provides general utility classes.
|
Modifier and Type | Method and Description |
---|---|
static <ResultType> |
ParallelUtil.compareTimes(java.util.Collection<? extends java.util.concurrent.Callable<ResultType>> tasks)
Compares the times needed by running the tasks sequentially versus
parallel.
|
static <ResultType> |
ParallelUtil.compareTimes(java.util.Collection<? extends java.util.concurrent.Callable<ResultType>> tasks,
java.util.concurrent.ThreadPoolExecutor threadPool)
Compares the times needed by running the tasks sequentially versus
parallel.
|
NamedValue<? extends java.lang.Number> |
MeasurablePerformanceAlgorithm.getPerformance()
Gets the name-value pair that describes the current performance of the
algorithm.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
SimulatedAnnealer.getPerformance()
Gets the performance, which is the best score so far.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Integer> |
AffinityPropagation.getPerformance()
Gets the performance, which is the number changed on the last iteration.
|
NamedValue<java.lang.Integer> |
DirichletProcessClustering.getPerformance() |
NamedValue<java.lang.Integer> |
KMeansClusterer.getPerformance()
Gets the performance, which is the number changed on the last iteration.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<? extends java.lang.Number> |
FactorizationMachineAlternatingLeastSquares.getPerformance() |
NamedValue<? extends java.lang.Number> |
FactorizationMachineStochasticGradient.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
GeneticAlgorithm.getPerformance()
Gets the performance, which is the cost of the best genome.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
AbstractBaumWelchAlgorithm.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
GeneralizedHebbianAlgorithm.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Integer> |
BatchMultiPerceptron.getPerformance()
Gets the performance, which is the error count on the last iteration.
|
NamedValue<java.lang.Integer> |
Perceptron.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Integer> |
KernelAdatron.getPerformance() |
NamedValue<java.lang.Integer> |
KernelPerceptron.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
AbstractMinimizerBasedParameterCostMinimizer.getPerformance()
Gets the performance, which is the cost of the minimizer on the last
iteration.
|
NamedValue<java.lang.Double> |
AbstractParameterCostMinimizer.getPerformance() |
NamedValue<java.lang.Integer> |
KernelBasedIterativeRegression.getPerformance()
Gets the performance, which is the error count on the last iteration.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
AbstractRootFinder.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
SuccessiveOverrelaxation.getPerformance()
Gets the performance, which is the total change on the last iteration.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<? extends java.lang.Number> |
GaussianContextRecognizer.Learner.getPerformance() |
Modifier and Type | Interface and Description |
---|---|
interface |
DistributionParameter<ParameterType,ConditionalType extends Distribution<?>>
Allows access to a parameter within a closed-form distribution, given by
the high-level String value.
|
Modifier and Type | Class and Description |
---|---|
class |
DefaultDistributionParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>>
Default implementation of DistributionParameter using introspection.
|
Modifier and Type | Interface and Description |
---|---|
interface |
BayesianParameter<ParameterType,ConditionalType extends Distribution<?>,PriorType extends Distribution<ParameterType>>
A parameter from a Distribution that has an assumed Distribution of
values.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractBayesianParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>,PriorType extends Distribution<ParameterType>>
Partial implementation of BayesianParameter
|
class |
DefaultBayesianParameter<ParameterType,ConditionalType extends ClosedFormDistribution<?>,PriorType extends Distribution<ParameterType>>
Default implementation of BayesianParameter using reflection.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<java.lang.Double> |
MetropolisHastingsAlgorithm.getPerformance() |
Modifier and Type | Class and Description |
---|---|
static class |
BernoulliBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
BinomialBayesianEstimator.Parameter
Parameter of this relationship
|
static class |
ExponentialBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
static class |
GammaInverseScaleBayesianEstimator.Parameter
Bayesian parameter describing this conjugate relationship.
|
static class |
MultinomialBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
MultivariateGaussianMeanBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
MultivariateGaussianMeanCovarianceBayesianEstimator.Parameter
Parameter for this conjugate prior estimator.
|
static class |
PoissonBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
UniformDistributionBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
UnivariateGaussianMeanBayesianEstimator.Parameter
Parameter of this conjugate prior relationship.
|
static class |
UnivariateGaussianMeanVarianceBayesianEstimator.Parameter
Parameter for this conjugate prior estimator.
|
Modifier and Type | Method and Description |
---|---|
NamedValue<? extends java.lang.Number> |
MixtureOfGaussians.Learner.getPerformance() |
NamedValue<java.lang.Double> |
MixtureOfGaussians.EMLearner.getPerformance() |
NamedValue<java.lang.Double> |
ScalarMixtureDensityModel.EMLearner.getPerformance() |
Modifier and Type | Method and Description |
---|---|
NamedValue<? extends java.lang.Number> |
DistributionParameterEstimator.getPerformance() |
Modifier and Type | Class and Description |
---|---|
class |
DefaultNamedValue<ValueType>
The
DefaultNamedValue class implements a container of a name-value
pair. |