Package | Description |
---|---|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractIncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<DataType,DistributionType>>
Partial implementation of
IncrementalEstimator . |
interface |
IncrementalEstimator<DataType,DistributionType extends Distribution<? extends DataType>,SufficientStatisticsType extends SufficientStatistic<? super DataType,? extends DistributionType>>
An estimator of a Distribution that uses SufficientStatistic to arrive
at its result.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractSufficientStatistic<DataType,DistributionType>
Partial implementation of SufficientStatistic
|
Modifier and Type | Class and Description |
---|---|
class |
BayesianLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
class |
BayesianRobustLinearRegression.IncrementalEstimator.SufficientStatistic
SufficientStatistic for incremental Bayesian linear regression
|
Modifier and Type | Class and Description |
---|---|
static class |
MultivariateGaussian.SufficientStatistic
Implements the sufficient statistics of the MultivariateGaussian.
|
static class |
MultivariateGaussian.SufficientStatisticCovarianceInverse
Implements the sufficient statistics of the MultivariateGaussian while
estimating the inverse of the covariance matrix.
|
static class |
UnivariateGaussian.SufficientStatistic
Captures the sufficient statistics of a UnivariateGaussian, which are
the values to estimate the mean and variance.
|