Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.bayes |
Provides algorithms for computing Bayesian categorizers.
|
gov.sandia.cognition.learning.algorithm.ensemble |
Provides ensemble methods.
|
gov.sandia.cognition.learning.data |
Provides data set utilities for learning.
|
gov.sandia.cognition.statistics |
Provides the inheritance hierarchy for general statistical methods and distributions.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
gov.sandia.cognition.statistics.distribution |
Provides statistical distributions.
|
Modifier and Type | Field and Description |
---|---|
protected DataDistribution<CategoryType> |
VectorNaiveBayesCategorizer.priors
The prior distribution for the categorizer.
|
Modifier and Type | Method and Description |
---|---|
DataDistribution<CategoryType> |
VectorNaiveBayesCategorizer.getPriors()
Gets the prior distribution over the categories.
|
Modifier and Type | Method and Description |
---|---|
void |
VectorNaiveBayesCategorizer.setPriors(DataDistribution<CategoryType> priors)
Sets the prior distribution over the categories.
|
Constructor and Description |
---|
VectorNaiveBayesCategorizer(DataDistribution<CategoryType> priors,
java.util.Map<CategoryType,java.util.List<DistributionType>> conditionals)
Creates a new
VectorNaiveBayesCategorizer with the given prior
and conditionals. |
Modifier and Type | Field and Description |
---|---|
protected Factory<? extends DataDistribution<CategoryType>> |
IVotingCategorizerLearner.counterFactory
Factory for counting votes.
|
protected java.util.ArrayList<DataDistribution<CategoryType>> |
IVotingCategorizerLearner.dataFullEstimates
The running estimate of the ensemble for each example.
|
protected java.util.ArrayList<DataDistribution<CategoryType>> |
IVotingCategorizerLearner.dataOutOfBagEstimates
The running estimate of the ensemble for each example where an ensemble
member can only vote on elements that were not in the bag used to train
it.
|
protected java.util.ArrayList<DataDistribution<CategoryType>> |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria.outOfBagEstimates
The running estimate of the ensemble for each example where an ensemble
member can only vote on elements that were not in the bag used to train
it.
|
Modifier and Type | Method and Description |
---|---|
abstract DataDistribution<CategoryType> |
AbstractCategorizerOutOfBagStoppingCriteria.getOutOfBagEstimate(int index)
Gets the out-of-bag estimate distribution across categories for the
training example with the given index.
|
DataDistribution<CategoryType> |
BaggingCategorizerLearner.OutOfBagErrorStoppingCriteria.getOutOfBagEstimate(int index) |
DataDistribution<CategoryType> |
IVotingCategorizerLearner.OutOfBagErrorStoppingCriteria.getOutOfBagEstimate(int index) |
Modifier and Type | Method and Description |
---|---|
Factory<? extends DataDistribution<CategoryType>> |
IVotingCategorizerLearner.getCounterFactory()
Gets the factory used for creating the object for counting the votes of
the learned ensemble members.
|
java.util.List<DataDistribution<CategoryType>> |
IVotingCategorizerLearner.getDataFullEstimates()
Gets the current estimates for each data point.
|
java.util.List<DataDistribution<CategoryType>> |
IVotingCategorizerLearner.getDataOutOfBagEstimates()
Gets the current out-of-bag estimates for each data point.
|
Modifier and Type | Method and Description |
---|---|
void |
IVotingCategorizerLearner.setCounterFactory(Factory<? extends DataDistribution<CategoryType>> counterFactory)
Sets the factory used for creating the object for counting the votes of
the learned ensemble members.
|
Constructor and Description |
---|
CategoryBalancedIVotingLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
CategoryBalancedIVotingLearner . |
IVotingCategorizerLearner(BatchLearner<? super java.util.Collection<? extends InputOutputPair<? extends InputType,CategoryType>>,? extends Evaluator<? super InputType,? extends CategoryType>> learner,
int maxIterations,
double percentToSample,
double proportionIncorrectInSample,
boolean voteOutOfBagOnly,
Factory<? extends DataDistribution<CategoryType>> counterFactory,
java.util.Random random)
Creates a new
IVotingCategorizerLearner . |
Modifier and Type | Method and Description |
---|---|
static <OutputType> |
DatasetUtil.countOutputValues(java.lang.Iterable<? extends InputOutputPair<?,? extends OutputType>> data)
Creates a data histogram over the output values from the given data.
|
Modifier and Type | Interface and Description |
---|---|
static interface |
DataDistribution.PMF<KeyType>
Interface for the probability mass function (PMF) of a data distribution.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractDataDistribution<KeyType>
An abstract implementation of the
DataDistribution interface. |
Modifier and Type | Method and Description |
---|---|
DataDistribution<DataType> |
DataDistribution.clone() |
Modifier and Type | Method and Description |
---|---|
DistributionEstimator<DataType,? extends DataDistribution<DataType>> |
DataDistribution.getEstimator() |
Modifier and Type | Method and Description |
---|---|
DataDistribution<ParameterType> |
AbstractParticleFilter.createInitialLearnedObject() |
DataDistribution<ParameterType> |
ParticleFilter.Updater.createInitialParticles(int numParticles)
Creates the initial particles.
|
DataDistribution<ParameterType> |
ImportanceSampling.learn(java.util.Collection<? extends ObservationType> data) |
DataDistribution<ParameterType> |
RejectionSampling.learn(java.util.Collection<? extends ObservationType> data) |
Modifier and Type | Method and Description |
---|---|
double |
AbstractParticleFilter.computeEffectiveParticles(DataDistribution<ParameterType> particles) |
double |
ParticleFilter.computeEffectiveParticles(DataDistribution<ParameterType> particles)
Computes the effective number of particles.
|
void |
SamplingImportanceResamplingParticleFilter.update(DataDistribution<ParameterType> particles,
ObservationType value) |
Modifier and Type | Class and Description |
---|---|
class |
DataCountTreeSetBinnedMapHistogram<ValueType extends java.lang.Comparable<? super ValueType>>
The
DataCountTreeSetBinnedMapHistogram class extends a
DefaultDataDistribution by mapping values to user defined bins
using a TreeSetBinner . |
class |
DefaultDataDistribution<KeyType>
A default implementation of
ScalarDataDistribution that uses a
backing map. |
static class |
DefaultDataDistribution.PMF<KeyType>
PMF of the DefaultDataDistribution
|
class |
ScalarDataDistribution
A Data Distribution that uses Doubles as its keys, making it a univariate
distribution
|
static class |
ScalarDataDistribution.CDF
CDF of the ScalarDataDistribution, maintains the keys/domain in
sorted order (TreeMap), so it's slower than it's peers.
|
static class |
ScalarDataDistribution.PMF
PMF of the ScalarDataDistribution
|
Modifier and Type | Method and Description |
---|---|
DistributionEstimator<KeyType,? extends DataDistribution<KeyType>> |
DefaultDataDistribution.getEstimator() |
Constructor and Description |
---|
DefaultDataDistribution(DataDistribution<? extends KeyType> other)
Creates a new instance of DefaultDataDistribution
|
PMF(DataDistribution<KeyType> other)
Copy constructor
|