Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.clustering |
Provides clustering algorithms.
|
gov.sandia.cognition.learning.algorithm.clustering.cluster |
Provides implementations of different types of clusters.
|
gov.sandia.cognition.learning.algorithm.clustering.divergence |
Provides divergence functions for use in clustering.
|
gov.sandia.cognition.learning.algorithm.clustering.initializer |
Provides implementations of methods for selecting initial clusters.
|
gov.sandia.cognition.learning.algorithm.nearest |
Provides algorithms for Nearest-Neighbor memory-based functions.
|
gov.sandia.cognition.learning.function.distance |
Provides distance functions.
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.math |
Provides classes for mathematical computation.
|
gov.sandia.cognition.text.relation |
Provides classes for relationships involving text.
|
Modifier and Type | Field and Description |
---|---|
protected DivergenceFunction<? super DataType,? super DataType> |
AffinityPropagation.divergence
The divergence function to use.
|
protected DivergenceFunction<? super ClusterType,? super DataType> |
PartitionalClusterer.divergenceFunction
An optional DivergenceFunction that is used to create a
WithinClusterDivergence function via a
WithinClusterDivergenceWrapper . |
Modifier and Type | Method and Description |
---|---|
DivergenceFunction<? super DataType,? super DataType> |
AffinityPropagation.getDivergence()
Gets the divergence function used by the algorithm.
|
DivergenceFunction<? super DataType,? super DataType> |
AffinityPropagation.getDivergenceFunction() |
DivergenceFunction<? super ClusterType,? super DataType> |
PartitionalClusterer.getDivergenceFunction()
Gets the stored metric between a cluster and a point.
|
Modifier and Type | Method and Description |
---|---|
void |
AffinityPropagation.setDivergence(DivergenceFunction<? super DataType,? super DataType> divergence)
Sets the divergence function used by the algorithm.
|
void |
PartitionalClusterer.setDivergenceFunction(DivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)
Use a metric between a cluster and a point to update the metric on
clusters.
|
Constructor and Description |
---|
AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
double selfDivergence)
Creates a new instance of AffinityPropagation.
|
AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
double selfDivergence,
double dampingFactor)
Creates a new instance of AffinityPropagation.
|
AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
double selfDivergence,
double dampingFactor,
int maxIterations)
Creates a new instance of AffinityPropagation.
|
Constructor and Description |
---|
MedoidClusterCreator(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of MedoidClusterCreator
|
Modifier and Type | Interface and Description |
---|---|
interface |
ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterDivergenceFunction interface defines a function that computes
the divergence between a cluster and some other object.
|
interface |
ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
two clusters of the same data type.
|
Modifier and Type | Class and Description |
---|---|
class |
AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The AbstractClusterToClusterDivergenceFunction class is an abstract class
that helps out implementations of ClusterToClusterDivergenceFunction
implementations by holding a DivergenceFunction between elements of a
cluster.
|
class |
CentroidClusterDivergenceFunction<DataType>
The CentroidClusterDivergenceFunction class implements a divergence function
between a cluster and an object by computing the divergence between the
center of the cluster and the object.
|
class |
ClusterCentroidDivergenceFunction<DataType>
The ClusterCentroidDivergenceFunction class implements the distance
between two clusters by computing the distance between the cluster's
centroid.
|
class |
ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterCompleteLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
class |
ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterMeanLinkDivergenceFunction class implements the mean linkage
distance metric between two clusters.
|
class |
ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>
The ClusterSingleLinkDivergenceFunction class implements the complete
linkage distance metric between two clusters.
|
class |
GaussianClusterDivergenceFunction
The GaussianClusterDivergenceFunction class implements a divergence
function between a Gaussian cluster and a vector, which is calculated
by finding the likelihood that the vector was generated from that Gaussian
and then returning the negative of the likelihood since it is a divergence
measure, not a similarity measure.
|
Modifier and Type | Field and Description |
---|---|
protected DivergenceFunction<? super ClusterType,? super DataType> |
WithinClusterDivergenceWrapper.divergenceFunction
The divergence function.
|
Constructor and Description |
---|
AbstractClusterToClusterDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of AbstractClusterToClusterDivergenceFunction
|
CentroidClusterDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of CentroidClusterDivergenceFunction.
|
ClusterCentroidDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of ClusterCompleteLinkDivergenceFunction using
the given divergence function for elements.
|
ClusterCompleteLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of ClusterCompleteLinkDivergenceFunction using
the given divergence function for elements.
|
ClusterMeanLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of ClusterMeanLinkDivergenceFunction using
the given divergence function for elements.
|
ClusterSingleLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)
Creates a new instance of ClusterSingleLinkDivergenceFunction using
the given divergence function for elements.
|
WithinClusterDivergenceWrapper(DivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)
Creates a new
WithinClusterDivergenceWrapper . |
Constructor and Description |
---|
AbstractMinDistanceFixedClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
AbstractMinDistanceFixedClusterInitializer . |
DistanceSamplingClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
MinDistanceSamplingClusterInitializer . |
GreedyClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
ClusterCreator<ClusterType,DataType> creator,
java.util.Random random)
Creates a new instance of
GreedyClusterInitializer . |
Modifier and Type | Method and Description |
---|---|
DivergenceFunction<? super InputType,? super InputType> |
NearestNeighbor.getDivergenceFunction()
Getter for divergenceFunction
|
Modifier and Type | Method and Description |
---|---|
void |
KNearestNeighborKDTree.setDivergenceFunction(DivergenceFunction<? super InputType,? super InputType> divergenceFunction) |
void |
NearestNeighborKDTree.setDivergenceFunction(DivergenceFunction<? super InputType,? super InputType> divergenceFunction) |
Constructor and Description |
---|
AbstractKNearestNeighbor(int k,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighbor
|
AbstractNearestNeighbor(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of AbstractNearestNeighbor
|
KNearestNeighborExhaustive(int k,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,? extends OutputType> averager)
Creates a new instance of KNearestNeighborExhaustive
|
Learner(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of
NearestNeighborExhaustive.Learner . |
Learner(int k,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
Summarizer<? super OutputType,OutputType> averager)
Creates a new instance of Learner
|
NearestNeighborExhaustive(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of
NearestNeighborExhaustive . |
NearestNeighborExhaustive(DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)
Creates a new instance of
NearestNeighborExhaustive . |
NearestNeighborKDTree(KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
DivergenceFunction<? super InputType,? super InputType> divergenceFunction)
Creates a new instance of NearestNeighborKDTree
|
Modifier and Type | Class and Description |
---|---|
class |
ChebyshevDistanceMetric
An implementation of the Chebyshev distance, which is the absolute value of
the largest difference between two vectors in a single dimension.
|
class |
CosineDistanceMetric
The
CosineDistanceMetric class implements a semimetric between
two vectors based on the cosine between the vectors. |
class |
EuclideanDistanceMetric
The
EuclideanDistanceMetric implements a distance metric that
computes the Euclidean distance between two points. |
class |
EuclideanDistanceSquaredMetric
The
EuclideanDistanceSquaredMetric implements a distance metric
that computes the squared Euclidean distance between two points. |
class |
IdentityDistanceMetric
A distance metric that is 0 if two objects are equal and 1 if they are not.
|
class |
ManhattanDistanceMetric
The
ManhattanDistanceMetric class implements a distance metric
between two vectors that is implemented as the sum of the absolute value of
the difference between the elements in the vectors. |
class |
MinkowskiDistanceMetric
An implementation of the Minkowski distance metric.
|
class |
WeightedEuclideanDistanceMetric
A distance metric that weights each dimension of a vector differently before
computing Euclidean distance.
|
Modifier and Type | Field and Description |
---|---|
protected DivergenceFunction<? super FirstType,? super SecondType> |
DefaultDivergenceFunctionContainer.divergenceFunction
The internal divergence function for the object to use.
|
protected DivergenceFunction<? super ValueType,? super InputType> |
DivergencesEvaluator.divergenceFunction
The divergence function to apply between the data and the input.
|
protected DivergenceFunction<? super ValueType,? super InputType> |
DivergencesEvaluator.Learner.divergenceFunction
The divergence function to apply between the data and the input.
|
Modifier and Type | Method and Description |
---|---|
DivergenceFunction<? super FirstType,? super SecondType> |
DefaultDivergenceFunctionContainer.getDivergenceFunction()
Gets the divergence function used by this object.
|
DivergenceFunction<? super FirstType,? super SecondType> |
DivergenceFunctionContainer.getDivergenceFunction()
Gets the divergence function used by this object.
|
DivergenceFunction<? super ValueType,? super InputType> |
DivergencesEvaluator.getDivergenceFunction() |
DivergenceFunction<? super ValueType,? super InputType> |
DivergencesEvaluator.Learner.getDivergenceFunction() |
Modifier and Type | Method and Description |
---|---|
static <DataType,InputType,ValueType> |
DivergencesEvaluator.Learner.create(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Convenience method for creating a
DivergencesEvaluator.Learner . |
static <InputType,ValueType> |
DivergencesEvaluator.create(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
java.util.Collection<ValueType> values)
Convenience method for creation a
DivergeceEvaluator . |
void |
DefaultDivergenceFunctionContainer.setDivergenceFunction(DivergenceFunction<? super FirstType,? super SecondType> divergenceFunction)
Sets the divergence function used by this object.
|
void |
DivergencesEvaluator.setDivergenceFunction(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Sets the divergence function to use from the values to the inputs.
|
void |
DivergencesEvaluator.Learner.setDivergenceFunction(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Sets the divergence function to use from the values to the inputs.
|
Constructor and Description |
---|
DefaultDivergenceFunctionContainer(DivergenceFunction<? super FirstType,? super SecondType> divergenceFunction)
Creates a new instance of
DefaultDivergenceFunctionContainer . |
DivergencesEvaluator(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
java.util.Collection<ValueType> values)
Creates a new
DivergencesEvaluator with the given divergence
and values. |
DivergencesEvaluator(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
java.util.Collection<ValueType> values,
VectorFactory<?> vectorFactory)
Creates a new
DivergencesEvaluator with the given divergence
and values. |
Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)
Creates a new
DivergenceFunction.Learner with the given
properties. |
Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
VectorFactory<?> vectorFactory)
Creates a new
DivergenceFunction.Learner with the given
properties. |
Modifier and Type | Class and Description |
---|---|
class |
KernelDistanceMetric<InputType>
The
KernelDistanceMetric class implements a distance metric that
utilizes an underlying Kernel for computing the distance. |
Modifier and Type | Interface and Description |
---|---|
interface |
Metric<EvaluatedType>
A metric is a non-negative function that satisfies the following properties
g(x, y) + g(y, z) >= g(x, z)
g(x, y) == g(y, x)
g(x, x) == 0.
|
interface |
Semimetric<InputType>
A semimetric is a divergence function that takes inputs from the same
set (domain) and is positive definite and symmetric.
|
Modifier and Type | Method and Description |
---|---|
DivergenceFunction<FromType,ToType> |
SimilarityFunction.asDivergence()
Converts the similarity function into a divergence function.
|