| Package | Description | 
|---|---|
| gov.sandia.cognition.learning.algorithm.clustering | Provides clustering algorithms. | 
| gov.sandia.cognition.learning.algorithm.clustering.cluster | Provides implementations of different types of clusters. | 
| gov.sandia.cognition.learning.algorithm.clustering.divergence | Provides divergence functions for use in clustering. | 
| gov.sandia.cognition.learning.algorithm.clustering.initializer | Provides implementations of methods for selecting initial clusters. | 
| gov.sandia.cognition.learning.algorithm.nearest | Provides algorithms for Nearest-Neighbor memory-based functions. | 
| gov.sandia.cognition.learning.function.distance | Provides distance functions. | 
| gov.sandia.cognition.learning.function.kernel | Provides kernel functions. | 
| gov.sandia.cognition.math | Provides classes for mathematical computation. | 
| gov.sandia.cognition.text.relation | Provides classes for relationships involving text. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected DivergenceFunction<? super DataType,? super DataType> | AffinityPropagation. divergenceThe divergence function to use. | 
| protected DivergenceFunction<? super ClusterType,? super DataType> | PartitionalClusterer. divergenceFunctionAn optional DivergenceFunction that is used to create a  WithinClusterDivergencefunction via aWithinClusterDivergenceWrapper. | 
| Modifier and Type | Method and Description | 
|---|---|
| DivergenceFunction<? super DataType,? super DataType> | AffinityPropagation. getDivergence()Gets the divergence function used by the algorithm. | 
| DivergenceFunction<? super DataType,? super DataType> | AffinityPropagation. getDivergenceFunction() | 
| DivergenceFunction<? super ClusterType,? super DataType> | PartitionalClusterer. getDivergenceFunction()Gets the stored metric between a cluster and a point. | 
| Modifier and Type | Method and Description | 
|---|---|
| void | AffinityPropagation. setDivergence(DivergenceFunction<? super DataType,? super DataType> divergence)Sets the divergence function used by the algorithm. | 
| void | PartitionalClusterer. setDivergenceFunction(DivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)Use a metric between a cluster and a point to update the metric on
 clusters. | 
| Constructor and Description | 
|---|
| AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
                   double selfDivergence)Creates a new instance of AffinityPropagation. | 
| AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
                   double selfDivergence,
                   double dampingFactor)Creates a new instance of AffinityPropagation. | 
| AffinityPropagation(DivergenceFunction<? super DataType,? super DataType> divergence,
                   double selfDivergence,
                   double dampingFactor,
                   int maxIterations)Creates a new instance of AffinityPropagation. | 
| Constructor and Description | 
|---|
| MedoidClusterCreator(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of MedoidClusterCreator | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | ClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterDivergenceFunction interface defines a function that computes
 the divergence between a cluster and some other object. | 
| interface  | ClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterToClusterDivergenceFunction defines a DivergenceFunction between
 two clusters of the same data type. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | AbstractClusterToClusterDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The AbstractClusterToClusterDivergenceFunction class is an abstract class
 that helps out implementations of ClusterToClusterDivergenceFunction
 implementations by holding a DivergenceFunction between elements of a
 cluster. | 
| class  | CentroidClusterDivergenceFunction<DataType>The CentroidClusterDivergenceFunction class implements a divergence function
 between a cluster and an object by computing the divergence between the
 center of the cluster and the object. | 
| class  | ClusterCentroidDivergenceFunction<DataType>The ClusterCentroidDivergenceFunction class implements the distance 
 between two clusters by computing the distance between the cluster's 
 centroid. | 
| class  | ClusterCompleteLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterCompleteLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. | 
| class  | ClusterMeanLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterMeanLinkDivergenceFunction class implements the mean linkage 
 distance metric between two clusters. | 
| class  | ClusterSingleLinkDivergenceFunction<ClusterType extends Cluster<DataType>,DataType>The ClusterSingleLinkDivergenceFunction class implements the complete 
 linkage distance metric between two clusters. | 
| class  | GaussianClusterDivergenceFunctionThe GaussianClusterDivergenceFunction class implements a divergence
 function between a Gaussian cluster and a vector, which is calculated
 by finding the likelihood that the vector was generated from that Gaussian
 and then returning the negative of the likelihood since it is a divergence
 measure, not a similarity measure. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected DivergenceFunction<? super ClusterType,? super DataType> | WithinClusterDivergenceWrapper. divergenceFunctionThe divergence function. | 
| Constructor and Description | 
|---|
| AbstractClusterToClusterDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of AbstractClusterToClusterDivergenceFunction | 
| CentroidClusterDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of CentroidClusterDivergenceFunction. | 
| ClusterCentroidDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of ClusterCompleteLinkDivergenceFunction using
 the given divergence function for elements. | 
| ClusterCompleteLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of ClusterCompleteLinkDivergenceFunction using
 the given divergence function for elements. | 
| ClusterMeanLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of ClusterMeanLinkDivergenceFunction using
 the given divergence function for elements. | 
| ClusterSingleLinkDivergenceFunction(DivergenceFunction<? super DataType,? super DataType> divergenceFunction)Creates a new instance of ClusterSingleLinkDivergenceFunction using
 the given divergence function for elements. | 
| WithinClusterDivergenceWrapper(DivergenceFunction<? super ClusterType,? super DataType> divergenceFunction)Creates a new  WithinClusterDivergenceWrapper. | 
| Constructor and Description | 
|---|
| AbstractMinDistanceFixedClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
                                          ClusterCreator<ClusterType,DataType> creator,
                                          java.util.Random random)Creates a new instance of  AbstractMinDistanceFixedClusterInitializer. | 
| DistanceSamplingClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
                                  ClusterCreator<ClusterType,DataType> creator,
                                  java.util.Random random)Creates a new instance of  MinDistanceSamplingClusterInitializer. | 
| GreedyClusterInitializer(DivergenceFunction<? super DataType,? super DataType> divergenceFunction,
                        ClusterCreator<ClusterType,DataType> creator,
                        java.util.Random random)Creates a new instance of  GreedyClusterInitializer. | 
| Modifier and Type | Method and Description | 
|---|---|
| DivergenceFunction<? super InputType,? super InputType> | NearestNeighbor. getDivergenceFunction()Getter for divergenceFunction | 
| Modifier and Type | Method and Description | 
|---|---|
| void | KNearestNeighborKDTree. setDivergenceFunction(DivergenceFunction<? super InputType,? super InputType> divergenceFunction) | 
| void | NearestNeighborKDTree. setDivergenceFunction(DivergenceFunction<? super InputType,? super InputType> divergenceFunction) | 
| Constructor and Description | 
|---|
| AbstractKNearestNeighbor(int k,
                        DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
                        Summarizer<? super OutputType,? extends OutputType> averager)Creates a new instance of KNearestNeighbor | 
| AbstractNearestNeighbor(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)Creates a new instance of AbstractNearestNeighbor | 
| KNearestNeighborExhaustive(int k,
                          java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data,
                          DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
                          Summarizer<? super OutputType,? extends OutputType> averager)Creates a new instance of KNearestNeighborExhaustive | 
| Learner(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)Creates a new instance of  NearestNeighborExhaustive.Learner. | 
| Learner(int k,
       DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
       Summarizer<? super OutputType,OutputType> averager)Creates a new instance of Learner | 
| NearestNeighborExhaustive(DivergenceFunction<? super InputType,? super InputType> divergenceFunction)Creates a new instance of  NearestNeighborExhaustive. | 
| NearestNeighborExhaustive(DivergenceFunction<? super InputType,? super InputType> divergenceFunction,
                         java.util.Collection<? extends InputOutputPair<? extends InputType,OutputType>> data)Creates a new instance of  NearestNeighborExhaustive. | 
| NearestNeighborKDTree(KDTree<InputType,OutputType,InputOutputPair<? extends InputType,OutputType>> data,
                     DivergenceFunction<? super InputType,? super InputType> divergenceFunction)Creates a new instance of NearestNeighborKDTree | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | ChebyshevDistanceMetricAn implementation of the Chebyshev distance, which is the absolute value of
 the largest difference between two vectors in a single dimension. | 
| class  | CosineDistanceMetricThe  CosineDistanceMetricclass implements a semimetric between
 two vectors based on the cosine between the vectors. | 
| class  | EuclideanDistanceMetricThe  EuclideanDistanceMetricimplements a distance metric that
 computes the Euclidean distance between two points. | 
| class  | EuclideanDistanceSquaredMetricThe  EuclideanDistanceSquaredMetricimplements a distance metric 
 that computes the squared Euclidean distance between two points. | 
| class  | IdentityDistanceMetricA distance metric that is 0 if two objects are equal and 1 if they are not. | 
| class  | ManhattanDistanceMetricThe  ManhattanDistanceMetricclass implements a distance metric
 between two vectors that is implemented as the sum of the absolute value of 
 the difference between the elements in the vectors. | 
| class  | MinkowskiDistanceMetricAn implementation of the Minkowski distance metric. | 
| class  | WeightedEuclideanDistanceMetricA distance metric that weights each dimension of a vector differently before
 computing Euclidean distance. | 
| Modifier and Type | Field and Description | 
|---|---|
| protected DivergenceFunction<? super FirstType,? super SecondType> | DefaultDivergenceFunctionContainer. divergenceFunctionThe internal divergence function for the object to use. | 
| protected DivergenceFunction<? super ValueType,? super InputType> | DivergencesEvaluator. divergenceFunctionThe divergence function to apply between the data and the input. | 
| protected DivergenceFunction<? super ValueType,? super InputType> | DivergencesEvaluator.Learner. divergenceFunctionThe divergence function to apply between the data and the input. | 
| Modifier and Type | Method and Description | 
|---|---|
| DivergenceFunction<? super FirstType,? super SecondType> | DefaultDivergenceFunctionContainer. getDivergenceFunction()Gets the divergence function used by this object. | 
| DivergenceFunction<? super FirstType,? super SecondType> | DivergenceFunctionContainer. getDivergenceFunction()Gets the divergence function used by this object. | 
| DivergenceFunction<? super ValueType,? super InputType> | DivergencesEvaluator. getDivergenceFunction() | 
| DivergenceFunction<? super ValueType,? super InputType> | DivergencesEvaluator.Learner. getDivergenceFunction() | 
| Modifier and Type | Method and Description | 
|---|---|
| static <DataType,InputType,ValueType> | DivergencesEvaluator.Learner. create(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
      DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)Convenience method for creating a
  DivergencesEvaluator.Learner. | 
| static <InputType,ValueType> | DivergencesEvaluator. create(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
      java.util.Collection<ValueType> values)Convenience method for creation a  DivergeceEvaluator. | 
| void | DefaultDivergenceFunctionContainer. setDivergenceFunction(DivergenceFunction<? super FirstType,? super SecondType> divergenceFunction)Sets the divergence function used by this object. | 
| void | DivergencesEvaluator. setDivergenceFunction(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)Sets the divergence function to use from the values to the inputs. | 
| void | DivergencesEvaluator.Learner. setDivergenceFunction(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)Sets the divergence function to use from the values to the inputs. | 
| Constructor and Description | 
|---|
| DefaultDivergenceFunctionContainer(DivergenceFunction<? super FirstType,? super SecondType> divergenceFunction)Creates a new instance of  DefaultDivergenceFunctionContainer. | 
| DivergencesEvaluator(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
                    java.util.Collection<ValueType> values)Creates a new  DivergencesEvaluatorwith the given divergence 
 and values. | 
| DivergencesEvaluator(DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
                    java.util.Collection<ValueType> values,
                    VectorFactory<?> vectorFactory)Creates a new  DivergencesEvaluatorwith the given divergence
 and values. | 
| Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
       DivergenceFunction<? super ValueType,? super InputType> divergenceFunction)Creates a new  DivergenceFunction.Learnerwith the given
 properties. | 
| Learner(BatchLearner<DataType,? extends java.util.Collection<ValueType>> learner,
       DivergenceFunction<? super ValueType,? super InputType> divergenceFunction,
       VectorFactory<?> vectorFactory)Creates a new  DivergenceFunction.Learnerwith the given
 properties. | 
| Modifier and Type | Class and Description | 
|---|---|
| class  | KernelDistanceMetric<InputType>The  KernelDistanceMetricclass implements a distance metric that
 utilizes an underlyingKernelfor computing the distance. | 
| Modifier and Type | Interface and Description | 
|---|---|
| interface  | Metric<EvaluatedType>A metric is a non-negative function that satisfies the following properties
     g(x, y) + g(y, z) >= g(x, z)
               g(x, y) == g(y, x)
               g(x, x) == 0. | 
| interface  | Semimetric<InputType>A semimetric is a divergence function that takes inputs from the same
 set (domain) and is positive definite and symmetric. | 
| Modifier and Type | Method and Description | 
|---|---|
| DivergenceFunction<FromType,ToType> | SimilarityFunction. asDivergence()Converts the similarity function into a divergence function. |