Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.pca |
Provides implementations of Principle Components Analysis (PCA).
|
gov.sandia.cognition.learning.function.kernel |
Provides kernel functions.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.statistics.bayesian |
Provides algorithms for computing Bayesian estimates of parameters.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelPrincipalComponentsAnalysis<DataType>
An implementation of the Kernel Principal Components Analysis (KPCA)
algorithm.
|
static class |
KernelPrincipalComponentsAnalysis.Function<DataType>
The resulting transformation function learned by Kernel Principal
Components Analysis.
|
Modifier and Type | Class and Description |
---|---|
class |
ExponentialKernel<InputType>
The
ExponentialKernel class implements a kernel that applies the
exponential function to the result of another kernel. |
class |
KernelDistanceMetric<InputType>
The
KernelDistanceMetric class implements a distance metric that
utilizes an underlying Kernel for computing the distance. |
class |
NormalizedKernel<InputType>
The
NormalizedKernel class implements an Kernel
that returns a normalized value between 0.0 and 1.0 by normalizing the
results of a given kernel. |
class |
VectorFunctionKernel
The
VectorFunctionKernel implements a kernel that makes use of a
vector function plus a kernel that operates on vectors. |
class |
WeightedKernel<InputType>
The
WeightedKernel class implements a kernel that takes another
kernel, evaluates it, and then the result is rescaled by a given weight. |
Modifier and Type | Method and Description |
---|---|
DefaultKernelContainer<InputType> |
DefaultKernelContainer.clone() |
Constructor and Description |
---|
DefaultKernelContainer(DefaultKernelContainer<? super InputType> other)
Creates a new copy of a KernelContainer and the kernel inside.
|
Modifier and Type | Class and Description |
---|---|
class |
KernelScalarFunction<InputType>
The
KernelScalarFunction class implements a scalar function that
uses a kernel to compute its output value. |
class |
LocallyWeightedKernelScalarFunction<InputType>
The
LocallyWeightedKernelScalarFunction class implements a scalar
function that uses kernels and does local weighting on them to get the
result value. |
Modifier and Type | Class and Description |
---|---|
class |
GaussianProcessRegression<InputType>
Gaussian Process Regression, is also known as Kriging, is a nonparametric
method to interpolate and extrapolate using Bayesian regression, where
the expressiveness of the estimator can grow with the data.
|