Package | Description |
---|---|
gov.sandia.cognition.learning.algorithm.factor.machine |
Provides factorization machine algorithms.
|
gov.sandia.cognition.learning.algorithm.gradient |
Provides gradient based learning algorithms.
|
gov.sandia.cognition.learning.algorithm.regression |
Provides regression algorithms, such as Linear Regression.
|
gov.sandia.cognition.learning.function.cost |
Provides cost functions.
|
gov.sandia.cognition.learning.function.scalar |
Provides functions that output real numbers.
|
gov.sandia.cognition.learning.function.vector |
Provides functions that output vectors.
|
Class and Description |
---|
ParameterGradientEvaluator
Interface for computing the derivative of the output with respect to the
parameters for a given input.
|
Class and Description |
---|
GradientDescendable
Defines the functionality of an object that is required in order to apply
the gradient descent algorithm to it.
|
GradientDescendableApproximator
Creates a
radientDescendable from a
VectorizableVectorFunction by estimating the parameter gradient
using a forward-difference approximation of the parameter Jacobian. |
ParameterGradientEvaluator
Interface for computing the derivative of the output with respect to the
parameters for a given input.
|
Class and Description |
---|
GradientDescendable
Defines the functionality of an object that is required in order to apply
the gradient descent algorithm to it.
|
Class and Description |
---|
GradientDescendable
Defines the functionality of an object that is required in order to apply
the gradient descent algorithm to it.
|
Class and Description |
---|
ParameterGradientEvaluator
Interface for computing the derivative of the output with respect to the
parameters for a given input.
|
Class and Description |
---|
GradientDescendable
Defines the functionality of an object that is required in order to apply
the gradient descent algorithm to it.
|
ParameterGradientEvaluator
Interface for computing the derivative of the output with respect to the
parameters for a given input.
|